

	English version at the end of this docu	ment
Ano Letivo	2020-21	
Unidade Curricular	QUÍMICA ORGÂNICA II	
Cursos	ENGENHARIA BIOLÓGICA (Mestrado Integrado)	
	CIÊNCIAS FARMACÊUTICAS (Mestrado Integrado)	
	BIOQUÍMICA (1.º ciclo)	
Unidade Orgânica	Faculdade de Ciências e Tecnologia	
Código da Unidade Curricular	140064295	
Área Científica	QUÍMICA	
Sigla		
Línguas de Aprendizagem	Português	
Modalidade de ensino	Ensino presencial.	

Docente Responsável

Américo Eduardo de Castro Lemos

DOCENTE	TIPO DE AULA	TURMAS	TOTAL HORAS DE CONTACTO (*)
Américo Eduardo de Castro Lemos	PL; T; TP	T1; TP1A; TP1B; TP2; PL1; PL2; PL3	28T; 28TP; 63PL
José António de Sousa Moreira	PL	PL4	21PL

^{*} Para turmas lecionadas conjuntamente, apenas é contabilizada a carga horária de uma delas.

ANO	PERÍODO DE FUNCIONAMENTO*	HORAS DE CONTACTO	HORAS TOTAIS DE TRABALHO	ECTS
20	S1	28T; 13TP; 21PL	156	6

^{*} A-Anual; S-Semestral; Q-Quadrimestral; T-Trimestral

Precedências

Sem precedências

Conhecimentos Prévios recomendados

Estrutura Atómica, Ligação Química, Termodinâmica e Cinética Química, Campo Eletromagnético.

Aprovação em Química Orgânica I.

Objetivos de aprendizagem (conhecimentos, aptidões e competências)

Ampliar os conhecimentos e competências de apreendidos no curso de Química Orgânica I, dar a conhecer a estrutura, os métodos de síntese e a reatividade de um conjunto alargado de grupos funcionais com particular enfase naqueles com relevância biológica. Entender os diferentes contributos estruturais para a reatividade dos compostos orgânicos.

No final do curso o aluno devera? ter uma perspetiva alargada das reações das principais classes de compostos, entendendo os seus mecanismos.

Devera?, ainda, ser capaz de planear estratégias de síntese, conhecer os principais procedimentos laboratoriais e os métodos de separação e caracterização dos produtos obtidos.

Conteúdos programáticos

Sistemas Conjugados e espectroscopia de UltraVioleta-Visível.

Análise Estrutural: Espetrometria de Massa, Espetroscopia de Infravermelho e Espetroscopia de Ressonância Magnética Nuclear

Compostos Aromáticos

Reações dos Compostos Aromáticos

Aldeídos e Cetonas

Enóis e Enolatos

Ácidos Carboxílicos e seus derivados

Substituições Alfa e condensação de enóis e enolatos

Aminas

Metodologias de ensino (avaliação incluída)

As aulas teóricas servirão de base ao trabalho independente dos alunos.

As práticas laboratoriais e a componente teórico pratica permitirão aos estudantes aplicar e desenvolver os conceitos lecionados. É esperada e incentivada a participação dos alunos em todos os tipos de aulas. A participação inferior a 2/3 das aulas práticas laboratoriais implica a não aprovação à disciplina.

A avaliação tem duas componentes; avaliação continua e avaliação por exame dos conhecimentos.

A avaliação continua engloba a participação dos alunos nas aulas teórico-práticas (TP) e praticas (P) tendo um peso de 25% na nota final da disciplina e será quantificada do seguinte modo:

TP: 5% participação dos alunos nas aulas; P: 20% - avaliação mini-testes (90%) e participação (10%) nas aulas práticas.

A avaliação teórica será feita através de exame ou frequência. A nota mínima admitida para cada uma das componentes será de 10 valores em 20.

A classificação final da disciplina será: 0,75 x T + 0,25% x (P+TP)

Bibliografia principal

Wade, Jr. L. G., Organic Chemistry, 9th ed., Pearson Education, 2016.

Vollhardt, K. P. C., Organic Chemistry, 6th ed., Freeman, 2010.

Bruice, P., Organic Chemistry, 8th ed., Pearson Education, 2016.

Academic Year	2020-21
Course unit	ORGANIC CHEMISTRY II
Courses	BIOLOGICAL ENGINEERING (Integrated Masters)
	PHARMACEUTICAL SCIENCES (Integrated Master's)
	BIOCHEMISTRY (1st Cycle)
Faculty / School	FACULTY OF SCIENCES AND TECHNOLOGY
Main Scientific Area	
Acronym	
Language of instruction	
	Portuguese.
Teaching/Learning modality	Presential learning.
Coordinating teacher	Américo Eduardo de Castro Lemos

Teaching staff Type		Classes	Hours (*)		
Américo Eduardo de Castro Lemos	PL; T; TP	T1; TP1A; TP1B; TP2; PL1; PL2; PL3	28T; 28TP; 63PL		
José António de Sousa Moreira	PL	PL4	21PL		

^{*} For classes taught jointly, it is only accounted the workload of one.

Contact hours

Т	TP	PL	TC	S	E	ОТ	0	Total
28	13	21	0	0	0	0	0	156

T - Theoretical; TP - Theoretical and practical; PL - Practical and laboratorial; TC - Field Work; S - Seminar; E - Training; OT - Tutorial; O - Other

Pre-requisites

no pre-requisites

Prior knowledge and skills

Atomic Structure, Chemical Bonding, Thermodinamics and Chemical Kinetics, Electromagnetic Field Theory.

Organic Chemistry I.

The students intended learning outcomes (knowledge, skills and competences)

Expand the knowledge and skills studied in the course of Organic Chemistry I, show the structure, the methods of synthesis and the reactivity of a wide range of functional groups with particular emphasis on those with biological relevance. Understand the different structural contributions to the reactivity of organic compounds.

At the end of the course the student should have a broad perspective of the reactions of the main classes of compounds and understanding their chemical mechanisms.

The students should also be able to draw simple synthetic strategies, know the main laboratory procedures and methods of separation and characterization of the obtained products.

Syllabus

Conjugated Systems and Ultraviolet-Visible spectroscopy.

Structural Analysis: Mass Spectrometry, Spectroscopy Infrared and Nuclear Magnetic Resonance Spectroscopy.

Aromatic Compounds.

Reactions of Aromatic Compounds.

Aldehydes and Ketones.

Enols and Enolates.

Carboxylic Acids and their derivatives.

Alfa replacements and condensation of Enols and Enolates.

Amines.

Teaching methodologies (including evaluation)

Lectures will serve as the basis for independent work of students.

Laboratory practices and the problem based classes will enable students to apply and develop the concepts lectured.

Student participation is expected and encouraged in all types of classes. Less than 2/3 attendance of laboratory classes implies non-approval of the discipline.

Evaluation has two components; continuous assessment and assessment by examination of knowledge.

The continuous assessment includes the participation of students in practical classes (TP) and practical (P) having a weight of 25% in the final grade of the course and will be quantified as follows:

TP: 5% student participation in class; P: 20% - assessment of mini-tests (90%) and participation (10%) in practical classes.

Theoretical evaluation will be done by exam or frequency. The minimum grade allowed for each component will be 10 out of 20.

The final grade will be: $0.75 \times T + 0.25\% \times (P + TP)$

Main Bibliography

Wade, Jr. L. G., Organic Chemistry, 9th ed., Pearson Education, 2016.

Vollhardt, K. P. C., Organic Chemistry, 6th ed., Freeman, 2010.

Bruice, P., Organic Chemistry, 8th ed., Pearson Education, 2016.