

			English version at the end of this docum	ent			
Ano Letivo	2018-19						
Unidade Curricular	DINÂMICA DO LITORAL						
Cursos	CIÊNCIAS DO N ENGENHARIA D	MAR (1.º ciclo) DO AMBIENTE (Mest	rado Integrado)				
Unidade Orgânica	Faculdade de Ci	ências e Tecnologia					
Código da Unidade Cu	ricular 140064297						
Área Científica	CIÊNCIAS DO A	CIÊNCIAS DO AMBIENTE					
Sigla							
Línguas de Aprendizag	em Português	Português					
Modalidade de ensino	Presencial	Presencial					
Docente Responsável	Óscar Manuel Fo	Óscar Manuel Fernandes Cerveira Ferreira					
DOCENTE TIPO DE AULA		TURMAS	TOTAL HORAS DE CONTACTO (*)				

^{*} Para turmas lecionadas conjuntamente, apenas é contabilizada a carga horária de uma delas.

ANO	PERÍODO DE FUNCIONAMENTO*	HORAS DE CONTACTO	HORAS TOTAIS DE TRABALHO	ECTS
40,30	S1	22,5T; 25TP; 10TC	168	6

^{*} A-Anual;S-Semestral;Q-Quadrimestral;T-Trimestral

Precedências

Sem precedências

Conhecimentos Prévios recomendados

Bases gerais de física e de geociências.

Objetivos de aprendizagem (conhecimentos, aptidões e competências)

Conhecer e caracterizar os principais tipos de costa e a sua evolução, a morfodinâmica e a dinâmica sedimentar associada e as implicações para o risco e para a gestão costeira. Aplicação ao caso português.

Conteúdos programáticos

Características gerais da zona costeira e dos principais mecanismos forçadores da modelação do litoral

Revisão das características e descritores das ondas, marés e nível médio do mar (medição e evolução recente)

Dinâmica Sedimentar na zona costeira (limites de transporte, transporte por ondas e por correntes, transporte longilitoral e transversal)

Os litorais arenosos (morfologia, dinâmica e evolução)

Ilhas barreira e Barras de Maré (morfologia, dinâmica e evolução)

Os litorais de sapal (morfologia, dinâmica e evolução)

Os litorais rochosos (morfologia, dinâmica e evolução)

Estuários (tipos, circulação e dinâmica sedimentar)

Deltas (tipos, morfologia, circulação e dinâmica sedimentar)

Caracterização do litoral português em função da dinâmica costeira

Alteração do abastecimento sedimentar em Portugal e suas consequências gerais

Evolução costeira no contexto das alterações climáticas

Metodologias de ensino (avaliação incluída)

Metodologia ensino-aprendizagem:

- Apresentações orais com suporte de imagens em ppt;
- Cálculo em aulas teórico-práticas;
- Recolha de dados em saídas de campo e tratamento em laboratório numérico;
- Saída de campo para análise geomorfológica e avaliação de problemas de risco/gestão costeira
- Apresentação de estudos de caso e de situações-problema para que os alunos construam hipótese com base em argumentos sólidos.

Métodos de avaliação:

- Quatro momentos de avaliação escrita: 3 mini-testes da parte teórico-prática ao longo do semestre + 1 exame
- Avaliação dos resultados das saídas de campo através de análise em aula ou incorporado nos testes de avaliação

Bibliografia principal

Waves, tides and shallow water processes, Open University

Coastal Environments, R.W. Carter, 1988

Beach-Processes and sedimentation, P. Komar, Prentice-Hall

Coastal Engineering Manual. Engineer Manual 1110-2-1100, U.S. Army Corps of Engineers, Washington, D.C. (in 6 volumes), (available at http://chl.erdc.usace.army.mil/cem

Academic Year	2018-19					
Course unit	DYNAMICS OF THE LITTORAL ZONE					
Courses	MARINE SCIENCES (1st Cycle) ENVIRONMENTAL ENGINEERING (Integrated Masters)					
Faculty / School	Faculdade de Ciências e Tecnologia					
Main Scientific Area	CIÊNCIAS DO AMBIENTE					
Acronym						
Language of instruction	Portuguese					
Teaching/Learning modality	Presencial					
Coordinating teacher	Óscar Manuel Fernandes Cerveira Ferreira					
Teaching staff		Туре	Classes	Hours (*)		

^{*} For classes taught jointly, it is only accounted the workload of one.

Contact hours

Т	TP	PL	TC	S	E	ОТ	0	Total
22,5	25	0	10	0	0	0	0	168

T - Theoretical; TP - Theoretical and practical; PL - Practical and laboratorial; TC - Field Work; S - Seminar; E - Training; OT - Tutorial; O - Other

Pre-requisites

no pre-requisites

Prior knowledge and skills

Basic knowledge on physics and geosciences.

The students intended learning outcomes (knowledge, skills and competences)

Understand and characterize the the main coastal types and their evolution, morphodynamics and associated sediment dynamics, and the implications to coastal risk and manage-ment. Application to Portuguese case studies.

Syllabus

General characteristics of the coastal zone and the main driving coastal morphodynamics mechanisms

Revision of the main descriptors of wave characteristics, tides and mean sea level (measurement and recent developments).

Sediment dynamics in the coastal zone (transport tresholds, transport by waves and currents, longshore and cross-shore transport)

The sandy coast (morphology, dynamics and evolution)

Barrier islands and inlets (morphology, dynamics and evolution)

The salt marshes (morphology, dynamics and evolution)

The rocky coast (morphology, dynamics and evolution)

Estuaries (types, circulation and sediment dynamics)

Deltas (types, morphology, circulation and sediment dynamics)

Characteristics of the Portuguese coast as a function of coastal dynamics

Change in sediment supply in Portugal and its general consequences

Coastal evolution within a climate change framework.

Teaching methodologies (including evaluation)

Teaching-learning methodology:

- Oral presentations with supporting images in ppt;
- Calculation in practical classes;
- Collect data on field trips and treatment in numerical laboratory;
- Field trip to geomorphological analysis and evaluation of hazards / coastal management
- Presentation of case studies and problematics situations for students to build hypothesis based on solid arguments.

Assessment methods:

- Four written evaluations: 3 practical mini-tests throughout the semester and 1 exam
- Evaluation of the results of field trips through analysis in the class or incorporated into the evaluation tests.

Main Bibliography

Waves, tides and shallow water processes, Open University

Coastal Environments, R.W. Carter, 1988

Beach-Processes and sedimentation, P. Komar, Prentice-Hall

Coastal Engineering Manual. Engineer Manual 1110-2-1100, U.S. Army Corps of Engineers, Washington, D.C. (in 6 volumes), (available at http://chl.erdc.usace.army.mil/cem)