

	English version at the end of this document
Ano Letivo	2023-24
Unidade Curricular	GENÉTICA MOLECULAR
Cursos	BIOLOGIA (1.º ciclo) RAMO: BIOLOGIA CIÊNCIAS FARMACÊUTICAS (Mestrado Integrado)
	BIOQUÍMICA (1.º ciclo)
	BIOLOGIA MARINHA (1.º ciclo)
Unidade Orgânica	Faculdade de Ciências e Tecnologia
Código da Unidade Curricular	140064303
Área Científica	CIÊNCIAS BIOLÓGICAS
Sigla	СВ
Código CNAEF (3 dígitos)	421

Contributo para os Objetivos de Desenvolvimento Sustentável - 4,12,3 ODS (Indicar até 3 objetivos)

Línguas de Aprendizagem

Aulas leccionadas em Português, documentação de estudo e slides maioritariamente em inglês

Modalidade de ensino

Aulas T, TP e PL: regime presencial

Aulas TPs em regime TBL; aulas teóricas gravadas e minitestes semanais para melhor compreensão de conceitos leccionados

Seminários com recurso a plataformas online.

Docente Responsável

Maria Leonor Quintais Cancela da Fonseca

DOCENTE	TIPO DE AULA	TURMAS	TOTAL HORAS DE CONTACTO (*)	
Maria Leonor Quintais Cancela da Fonseca	S; T	T1; S1A; S1B; S1C; S2	20T; 6S	
Filomena Maria Coelho Guerra da Fonseca	PL	PL1; PL2; PL3; PL4; PL5; PL6; PL7; PL8	120PL	
Vera Linda Ribeiro Marques	PL	PL10; PL11; PL9	45PL	
Natércia Maria da Silva Conceição	TP	TP1; TP2; TP3; TP4; TP5; TP6	108TP	

^{*} Para turmas lecionadas conjuntamente, apenas é contabilizada a carga horária de uma delas.

ANO	PERÍODO DE FUNCIONAMENTO*	HORAS DE CONTACTO	HORAS TOTAIS DE TRABALHO	ECTS
20,30	S2	20T; 18TP; 15PL; 3S	156	6

^{*} A-Anual;S-Semestral;Q-Quadrimestral;T-Trimestral

Precedências

Sem precedências

Conhecimentos Prévios recomendados

Bioquímica, Microbiologia, conceitos básicos de Biologia Celular

Objetivos de aprendizagem (conhecimentos, aptidões e competências)

Conhecer a estrutura dos genomas de organismos procariotas e eucariotas (nuclear e citoplasmático) e os mecanismos moleculares envolvidos na replicação, transcrição e tradução destes genomas e na regulação da expressão dos seus genes.

Conhecer as principais técnicas de análise de genomas e de expressão genética utilizadas de forma rotineira em laboratórios de engenharia genética e suas aplicações em ciências biológicas, forenses, biomédicas e farmacêuticas e ainda em diagnóstico molecular. Ter conhecimentos para executar técnicas básicas incluindo: extracção de DNA e RNA, clonagem de DNA em plasmídeos, transformação de bactérias, amplificação por PCR, separação de ácidos nucleicos por electroforese, utilização de enzimas de restrição.

Adquirir conhecimentos básicos necessários à execução de projectos científicos ou de diagnóstico molecular utilizando técnicas básicas de genética molecular

Ter capacidade de analisar e interpretar artigos de investigação na área da disciplina.

Conteúdos programáticos

- 1) Estrutura e evolução dos genomas (nucleares e extra-nucleares) / cromossomas / genes em eucariotas/procariotas.
- 2) Mecanismos de replicação, transcrição do DNA. Alteração da cromatina e efeitos epigenéticos. RNA polimerases e sua especificidade. Diversidade de RNAs e suas funções.
- 3) Regulação da transcrição, estrutura dos promotores, splicing alternado. Mecanismos de edição do RNA. MicroRNAs e suas funções. Contribuição para a diferenciação celular, especificidade tecidular, desenvolvimento, envelhecimento, adaptações ambientais e alterações patológicas.
- 4) Mecanismos de tradução do mRNA. Processamento da proteína.
- 5) Expressão genética em procariotas: Operões: constituição, função e regulação de expressão.
- 6) Mutações, causas e mecanismos de reparação. Alterações dos fenótipos associados a processos mutagénicos, patologias e efeitos ambientais. Mutação e evolução
- 7) Técnicas de análise de DNA e RNA. Aplicações em engenharia genética e diagnóstico

Metodologias de ensino (avaliação incluída)

Aulas T: aprendizagem dos conceitos. **Aulas TP**: Discussão dos conceitos apreendidos, execução de exercícios. **Práticas/PL**: execução técnicas básicas de biologia molecular. **Seminários:** aplicações da genética.

Frequência das aulas:

- T, TP, aconselhadas
- PL: obrigatórias para admissão a exames. Trabalhadores estudantes podem escolher turmas compatíveis com atividade. Frequência das aulas PL e nota da PL (se > ou = 9.5/20) obtida nos últimos 2 anos aceite.
- Seminários: online

Avaliação: Nota final: T+TP: 75% + PL: 25%. Duas frequências intercalares: (i) T1=metade da matéria T+TP e (ii) todas as PL. Avaliação positiva (> ou = 9,5) numa delas dispensa dessa parte no exame final.

Ponderação de notas parciais desde que com avaliação positiva **possível entre épocas de exame do mesmo ano letivo.**

Nota final requer avaliação positiva (> ou = 9,5) <u>em cada uma das duas vertentes, Teórica e Pratica,</u> para aprovação à UC de Genética Molecular.

Exame de melhoria pode ser modular (T e/ou PL)

Bibliografia principal

- Genetics : analysis of genes and genomes , 9th edition (2019)- Daniel Hartl and Bruce Cochrane (Jones & Bartlett Learning, editors)
- Essential genetics and genomics, 7th edition, 2018 (D Hartl) Eds: Jones and Bartlett
- Lewin's Genes XII Jones and Bartlett Publishers, Inc; 12th Revised edition (1 Feb. 2017)
- Genetics : analysis of genes and genomes, <u>Daniel L Hartl</u>; <u>Bruce Cochrane</u>, Eds: Burlington, MA: ones and Bartlett Learning (2019)
- Livros digitais-
- biblioteca do NIH (http://www.ncbi.nlm.nih.gov/books/)
- Gene Expression and Regulation in Mammalian Cells . Transcription From General Aspects Edited by Fumiaki Uchiumi (2018) Open access peer-reviewed Edited Volume DOI: 10.5772/intechopen.70352
- Artigos científicos da especialidade

Para as aulas práticas : sebenta de protocolos fornecida na disciplina

Academic Year	2023-24			
Course unit	MOLECULAR GENETICS			
Courses	BIOLOGY (1st cycle) BRANCH: BIOLOGY PHARMACEUTICAL SCIENCES (Integrated Master's) BIOCHEMISTRY (1st cycle) MARINE BIOLOGY (1st cycle)			
Faculty / School	FACULTY OF SCIENCES AND TECHNOLOGY			
Main Scientific Area				
Acronym	BC GB			
CNAEF code (3 digits)	421			
Contribution to Sustainable Development Goals - SGD (Designate up to 3 objectives)	4,12,3			
Language of instruction	Portuguese for lectures, mostly English for support documents.			

Teaching/Learning modality

Classes T, TP and PL taught in classroom

TP classes in TBL mode; Recorded theoretical classes and weekly mini-tests provided for better understanding of taught concepts

Seminars using online platforms.

Coordinating teacher

Maria Leonor Quintais Cancela da Fonseca

Teaching staff	Туре	Classes	Hours (*)
Maria Leonor Quintais Cancela da Fonseca	S; T	T1; S1A; S1B; S1C; S2	20T; 6S
Filomena Maria Coelho Guerra da Fonseca	PL	PL1; PL2; PL3; PL4; PL5; PL6; PL7; PL8	120PL
Vera Linda Ribeiro Marques	PL	PL10; PL11; PL9	45PL
Natércia Maria da Silva Conceição	TP	TP1; TP2; TP3; TP4; TP5; TP6	108TP

^{*} For classes taught jointly, it is only accounted the workload of one.

Contact hours

Т	TP	PL	TC	S	E	ОТ	0	Total
20	18	15	0	3	0	0	0	156

T - Theoretical; TP - Theoretical and practical; PL - Practical and laboratorial; TC - Field Work; S - Seminar; E - Training; OT - Tutorial; O - Other

Pre-requisites

no pre-requisites

Prior knowledge and skills

Biochemistry, Microbiology, Basic Cell Biology

The students intended learning outcomes (knowledge, skills and competences)

Know the structure of the nuclear and extra-nuclear genomes of prokaryotes and eukaryotes and the molecular mechanisms involved in the replication, transcription and translation of these genomes and in the regulation of the expression of their genes.

Know the main techniques of genome analysis and genetic expression routinely used in genetic engineering laboratories and their applications in the biological, forensic, biomedical and pharmaceutical sciences and also in molecular diagnostics. Be knowledgeable in performing basic techniques including: DNA and RNA extraction, DNA cloning in plasmids, transformation of bacteria, PCR amplification, nucleic acid separation by electrophoresis, use of restriction enzymes.

Acquire basic knowledge necessary for the execution of scientific or molecular diagnostic projects using basic techniques of molecular genetics

Have the ability to analyze and interpret research articles in the subject area.

Syllabus

- 1) Structure and evolution of nuclear and extra-nuclear genomes / chromosomes / genes in eukaryotes / prokaryotes.
- 2) Mechanisms of DNA replication and transcription. Chromatin alteration and epigenetic effects. RNA polymerases and their specificity. Diversity of RNAs and their functions.
- 3) Regulation of transcription, alternative promoters, alternating removal of introns, trans-splicing. RNA editing mechanisms. Contribution to cell differentiation, tissue specificity, development, aging, environmental adaptations and pathological alterations.
- 4) Mechanisms of mRNA translation. MicroRNAs and transcript stability. Protein processing.
- 5) Gene expression in prokaryotes: Operons: constitution, function and regulation of expression.
- 6) Mutations, causes and repair mechanisms. Changes in phenotypes associated with mutagenic and pathologic processes and environmental effects. Mutation and evolution
- 7) DNA and RNA analysis techniques. Applications in genetic engineering and diagnosis.

Teaching methodologies (including evaluation)

Lectures (T): Learning of key concepts. TP classes: Discussion of concepts learned, and exercises. Practical classes (PL): perform basic molecular biology techniques. Seminars on genetic applications.

Class attendance: T, TP, advised. PL: mandatory to be admitted to exams. Working students can attend PLs of their choice compatible with their activities. Attendance of PL classes and/or evaluation (if positive) obtained in the last 2 years is accepted. Seminars online.

Evaluation: T+TP: 75%; PL: 25%. Two partial exams: T1 = half T+TP and PL = all PL classes. Those who have a positive evaluation in one module (> or =9.5) need only take the exam on the remaining modules. Can compile marks obtained in one given exam session with those obtained in previous exam sessions in the same year if marks > or = to 9.5. Grade improvement can be modular.

Final approval of the UC requires independent approval (> or =9.5) in each part, T and PL.

Main Bibliography

- Genetics: analysis of genes and genomes, 9th edition (2019)- Daniel Hartl and Bruce Cochrane (Jones & Bartlett Learning, editors)
- Genes X. Benjamin Lewin. Editora: Jones and Bartlett (2011)
- Essential Genetics: a genomics perspective.6th ed. Daniel L. Hartl (2014)
- Introduction to Genetic Analysis (10th edition). Griffiths JF et al, 2012
- Livros digitais-biblioteca do NIH (http://www.ncbi.nlm.nih.gov/books/)
- Specific scientific papers.

For lab classes: booklet with procedures supplied by the curricular unit.