

		English version at the end of this document
Ano Letivo	2020-21	
Unidade Curricular	QUÍMICA GERAL	
Cursos	BIOLOGIA MARINHA (1.º ciclo)	
	BIOENGENHARIA (1.º ciclo)	
	BIOLOGIA (1.º ciclo)	
	AGRONOMIA (1.º ciclo)	
	BIOTECNOLOGIA (1.º ciclo)	
Unidade Orgânica	Faculdade de Ciências e Tecnologia	
Código da Unidade Curricular	140064329	
Área Científica	QUÍMICA	
Sigla		
Línguas de Aprendizagem	português	

Modalidade de ensino

Presencial

Docente Responsável

José António de Sousa Moreira

DOCENTE	TIPO DE AULA	TURMAS	TOTAL HORAS DE CONTACTO (*)	
José António de Sousa Moreira	Т	T1A; T1B; T2A; T2B; T2C	52T	
Igor Khmelinskii	PL	PL1A; PL1B; PL2; PL3; PL4; PL5	90PL	
Carolina Maria Apolinário do Rio	PL	PL6A; PL6B; PL6C; PL7; PL8	54PL	
Rui Miguel da Silva Coelho Borges dos Santos	TP	TP2; TP3; TP4	58.5TP	
Ana Maria dos Santos Rosa da Costa	TP	TP1A; TP1B; TP5A; TP5B; TP5C; TP6	58.5TP	

^{*} Para turmas lecionadas conjuntamente, apenas é contabilizada a carga horária de uma delas.

ANO	PERÍODO DE FUNCIONAMENTO*	HORAS DE CONTACTO	HORAS TOTAIS DE TRABALHO	ECTS
1º	S1	26T; 19.5TP; 18PL	156	6

^{*} A-Anual;S-Semestral;Q-Quadrimestral;T-Trimestral

Precedências

Sem precedências

Conhecimentos Prévios recomendados

Física e Química; Matemática

Objetivos de aprendizagem (conhecimentos, aptidões e competências)

Os alunos deverão adquirir ou aprofundar conhecimentos básicos de Química que os preparem para a compreensão dos temas que irão abordar ao longo de diversas unidades curriculares futuras. Os principais temas a estudar nesta unidade curricular serão: ligação química e interações moleculares, termodinâmica química, equilíbrio químico, reações ácido-base, reações de oxidação-redução.. Devem desenvolver a capacidade de aplicar os conceitos teóricos à resolução de problemas de aplicação. Na componente prática pretende-se que os alunos conheçam e cumpram as regras de segurança e desenvolvam as suas capacidades de: manuseamento do material corrente de laboratório; de reagentes e de equipamentos básicos; de realização de técnicas básicas num laboratório de Química e de organização da informação recolhida no laboratório.

Conteúdos programáticos

- 1. Fundamentos
- 2. Átomos
- 3. Moléculas
- 4. Matéria
- 5. Termodinâmica
- 6. Equilíbrio
- 7. Reações
- 8 Cinética
- 9 Elementos do grupo principal
- 10 Elementos do Bloco d
- 11 Química Nuclear
- 12 Química Orgânica

Metodologias de ensino (avaliação incluída)

Serão leccionadas aulas expositivas com recurso a meios audiovisuais, aulas práticas laboratoriais, e aulas teórico-práticas. Os alunos irão receber conjuntos de exercícios para resolver em casa. Tutoriais discutem assuntos específicos apresentados pelos alunos presentes.

A componente teórica será avaliada no exame final.

A componente prática (30% da nota final da disciplina) será avaliada em mini-testes (perguntas de escolha múltipla, com perguntas teóricas e práticas sobre o respectivo trabalho), a fazer no início da cada aula prática, e mini-relatórios de cálculos feitos, a serem entregues no fim da aula prática. Para serem admitidos ao exame, os alunos terão que obter frequentar pelo menos 80% das aulas práticas, com aproveitamento.

Bibliografia principal

P. Atkins, L. Jones, L. Laverman; Chemical Principles: The Quest for Insight 7th Ed., Macmillan Education, 2016.

Academic Year	2020-21			
Course unit	GENERAL CHEMISTRY			
Courses	MARINE BIOLOGY (1st Cycle)			
	BIOENGINEERING			
	BIOLOGY (1st Cycle)			
	AGRONOMY (1st Cycle)			
	BIOTECHNOLOGY (1st Cycle)			
Faculty / School FACULTY OF SCIENCES AND TECHNOLOGY				
Main Scientific Area				
Acronym				
Language of instruction	portuguese			
Teaching/Learning modality	Face to face learning			
Coordinating teacher	José António de Sousa Moreira			

Teaching staff	Туре	Classes	Hours (*)
José António de Sousa Moreira	Т	T1A; T1B; T2A; T2B; T2C	52T
Igor Khmelinskii	PL	PL1A; PL1B; PL2; PL3; PL4; PL5	90PL
Carolina Maria Apolinário do Rio	PL	PL6A; PL6B; PL6C; PL7; PL8	54PL
Rui Miguel da Silva Coelho Borges dos Santos	TP	TP2; TP3; TP4	58.5TP
Ana Maria dos Santos Rosa da Costa	TP	TP1A; TP1B; TP5A; TP5B; TP5C; TP6	58.5TP

For classes taught jointly, it is only accounted the workload of one.

Contact hours

Т	TP	PL	TC	S	E	ОТ	0	Total
26	19.5	18	0	0	0	0	0	156

T - Theoretical; TP - Theoretical and practical; PL - Practical and laboratorial; TC - Field Work; S - Seminar; E - Training; OT - Tutorial; O - Other

Pre-requisites

no pre-requisites

Prior knowledge and skills

Chemistry, physics and mathematics.

The students intended learning outcomes (knowledge, skills and competences)

This discipline will assure that the students: a) have a solid base in the knowledge and usage of chemical products and modern scientific theories; b) are able to plan, execute record and analyse results of, chemical experiments; c) are able to solve problems by applying critical thinking and analytic reasoning; d) are able do identify and solve problems and explore new areas of research; e) are able to use library search and explore methods of obtaining information about a topic, a chemical compound, a chemical method, or an issue related to chemistry; f) know the adequate proceedings and norms for safe handling and usage of chemical products; g) are able to communicate the results of their work in an intelligible way to chemists and non-chemists.

Syllabus

- 1. Fundamentals
- 2. Atoms
- 3. Molecules
- 4. Bulk Matter
- 5. Thermodynamics
- 6. Equilibrium
- 7. Reactions
- 8. Kinetics
- 9. Main group elements
- 10. The d-block
- 11. Nucelar Chemistry
- 12. Organic Chemistry

Teaching methodologies (including evaluation)

Classes will be given as lectures with audiovisual aids, practical labs, and seminars devoted to solving exercises. The students will get homework to solve exercises, each week, applying theoretic knowledge to specific cases. Tutorials will focus on specific isses presented by attending students.

Theoretical component will be evaluated by an exam.

The practical component (30% of the final grade) is evaluated in mini-tests (multiple choice questions, theoretical and practical, regarding the current lab experiment), done at the beginning of the class, a mini-reports of the calculations made, to be delivered by the end of the class. To be admitted to the final evaluation, the students should get approval in no less than 80% of the labs.

Main Bibliography

P. Atkins, L. Jones, L. Laverman; Chemical Principles: The Quest for Insight 7th Ed., Macmillan Education, 2016.