

	English version at the end of this document
Ano Letivo	2018-19
Unidade Curricular	REPRODUÇÃO EM AQUACULTURA
Cursos	AQUACULTURA E PESCAS (2.º Ciclo) RAMO: AQUACULTURA
Unidade Orgânica	Faculdade de Ciências e Tecnologia
Código da Unidade Curricular	14301047
Área Científica	CIÊNCIAS BIOLÓGICAS
Sigla	СВ
Línguas de Aprendizagem	Português ou Inglês (se estiverem presentes estudantes internacionais)
Modalidade de ensino	Presencial
Docente Responsável	Adelino Vicente Mendonça Canário

DOCENTE	TIPO DE AULA	TURMAS	TOTAL HORAS DE CONTACTO (*)		
Adelino Vicente Mendonça Canário	PL; T; TP	T1; TP1; PL1	7.5T; 5TP; 10PL		

^{*} Para turmas lecionadas conjuntamente, apenas é contabilizada a carga horária de uma delas.

ANO	PERÍODO DE FUNCIONAMENTO*	HORAS DE CONTACTO	HORAS TOTAIS DE TRABALHO	ECTS
1º	S2	7.5T; 5TP; 10PL	84	3

^{*} A-Anual;S-Semestral;Q-Quadrimestral;T-Trimestral

Precedências

Sem precedências

Conhecimentos Prévios recomendados

Biologia Geral

Objetivos de aprendizagem (conhecimentos, aptidões e competências)

1) Provide basic concepts of reproductive biology 2) Provide the scientific and reasoning for the application of reproductive biology to aquaculture 3) Provide the tools for the students to explore recent advances in reproductive biology and related subjects both for basic science and applications of science.

Conteúdos programáticos

- 1) Introduction: Variability of reproductive strategies in teleost fishes
- 2) Origin and morphology of gonads and ducts
- 3) Sex determination and differentiation in fish
- 4) Gametogenesis
- 5) Neuroendocrine control of gametogenesis
- 6) The cycle of gametogenesis and endocrine cycle in salmonids and non-salmonids
- 7) Hormonal pheromones
- 8) The endocrine regulation of puberty in male fish: implications for ongoing problems in aquaculture
- 9) Hormonal spawning induction in fish farming
- 10) Environmental control of fish reproduction

Metodologias de ensino (avaliação incluída)

Topics will be presented in lectures which the students explore further in bibliography provided from books and scientific papers, generally reviews. A few practical hands on or demonstration classes will deal with basic topics such as gametogenesis. Students are encouraged to further explore particular topics by writing a review in the style of a scientific paper, which will be subject to peer review and will be presented orally. Students will be examined by 1) Extended abstract of article and oral presentation(25%) 2) 4) written exam(75%).

Bibliografia principal

Babin, Patrick J.; Cerdà, Joan; Lubzens, Esther (Eds.) The Fish Oocyte, From Basic Studies to Biotechnological Applications, 2007, XIV, 510

p. Springer

Billard, Ř. (Ed.), 1990. Spermatogenesis in teleost fish. Marshall's physiology of reproduction. Churchill Livingstone, New York, 183-212 pp. Bromage, N., M. Porter & C. Randall (2001) The environmental regulation of maturation in farmed finfish with special reference to the role of photoperiod and melatonin. Aquaculture, 197, 63-98.

Devlin, R. H. & Y. Nagahama (2002) Sex determination and sex differentiation in fish: an overview of genetic, physiological, and environmental influences. Aquaculture, 208, 191-364.

Hofman, M. A. (2004) The brains calendar: neural mechanisms of seasonal timing. Biological Reviews, 79, 61-77.

Peter, R. E. & K. L. Yu (1997) Neuroendocrine regulation of ovulation in fishes: Basic and applied aspects. Reviews in Fish Biology and Fisheries, 7, 173-197.

Academic Year	2018-19						
Course unit	REPRODUCTION IN AQUACU	REPRODUCTION IN AQUACULTURE					
Courses	AQUACULTURE AND FISHERIES RAMO: AQUACULTURA						
Faculty / School	Faculdade de Ciências e Tecn	ologia					
Main Scientific Area	CY BI						
Acronym	BC GB						
Language of instruction	Portuguese or English (if international students are present)						
Teaching/Learning modality	direct contact with students						
Coordinating teacher	Adelino Vicente Mendonça Cal	nário					
Teaching staff		Туре	Classes	Hours (*)			
Adelino Vicente Mendonça Ca	nário	PL; T; TP	T1; TP1; PL1	7.5T; t	5TP; 10PL		

^{*} For classes taught jointly, it is only accounted the workload of one.

Contact hours

Т	TP	PL	TC	S	E	ОТ	0	Total
7.5	5	10	0	0	0	0	0	84

T - Theoretical; TP - Theoretical and practical; PL - Practical and laboratorial; TC - Field Work; S - Seminar; E - Training; OT - Tutorial; O - Other

Pre-requisites

no pre-requisites

Prior knowledge and skills

General Biology

The students intended learning outcomes (knowledge, skills and competences)

1) Provide basic concepts of reproductive biology 2) Provide the scientific and reasoning for the application of reproductive biology to aquaculture 3) Provide the tools for the students to explore recent advances in reproductive biology and related subjects both for basic science and applications of science.

Syllabus

- 1) Introduction: Variability of reproductive strategies in teleost fishes
- 2) Origin and morphology of gonads and ducts
- 3) Sex determination and differentiation in fish
- 4) Gametogenesis
- 5) Neuroendocrine control of gametogenesis
- 6) The cycle of gametogenesis and endocrine cycle in salmonids and non-salmonids
- 7) Hormonal pheromones
- 8) The endocrine regulation of puberty in male fish: implications for ongoing problems in aquaculture
- 9) Hormonal spawning induction in fish farming
- 10) Environmental control of fish reproduction

Teaching methodologies (including evaluation)

Topics will be presented in lectures which the students explore further in bibliography provided from books and scientific papers, generally reviews. A few practical hands on or demonstration classes will deal with basic topics such as gametogenesis. Students are encouraged to further explore particular topics by writing a review in the style of a scientific paper, which will be subject to peer review and will be presented orally. Students will be examined by 1) Extended abstract of article and oral presentation(25%) 2) 4) written exam(75%).

Main Bibliography

Babin, Patrick J.; Cerdà, Joan; Lubzens, Esther (Eds.) The Fish Oocyte, From Basic Studies to Biotechnological Applications, 2007, XIV, 510

p. Springer

Billard, R. (Ed.), 1990. Spermatogenesis in teleost fish. Marshall's physiology of reproduction. Churchill Livingstone, New York, 183-212 pp. Bromage, N., M. Porter & C. Randall (2001) The environmental regulation of maturation in farmed finfish with special reference to the role of photoperiod and melatonin. Aquaculture, 197, 63-98.

Devlin, R. H. & Y. Nagahama (2002) Sex determination and sex differentiation in fish: an overview of genetic, physiological, and environmental influences. Aquaculture, 208, 191-364.

Hofman, M. A. (2004) The brains calendar: neural mechanisms of seasonal timing. Biological Reviews, 79, 61-77.

Peter, R. E. & K. L. Yu (1997) Neuroendocrine regulation of ovulation in fishes: Basic and applied aspects. Reviews in Fish Biology and Fisheries, 7, 173-197.