

		English version at the end of this document
Ano Letivo	2020-21	
Unidade Curricular	MATEMÁTICA II	
Cursos	ENGENHARIA MECÂNICA (1.º ciclo)	
Unidade Orgânica	Instituto Superior de Engenharia	
Código da Unidade Curricular	14411007	
Área Científica	MATEMÁTICA	
Sigla		
Línguas de Aprendizagem	Português	
Modalidade de ensino	Presencial	
Docente Responsável	José Inácio de Jesus Rodrigues	

DOCENTE	TIPO DE AULA	TURMAS	TOTAL HORAS DE CONTACTO (*)		
José Inácio de Jesus Rodrigues	OT; T; TP	T1; TP1; TP2; OT1; OT2	30T; 30TP; 30OT		
Paula Maria Custódio Ribeiro	OT; T; TP	T1; TP1; OT1	10T; 5TP; 5OT		
Ana Bela Batista dos Santos	OT; T; TP	T1; TP1; OT1	20T; 10TP; 10OT		

^{*} Para turmas lecionadas conjuntamente, apenas é contabilizada a carga horária de uma delas.

ANO	PERÍODO DE FUNCIONAMENTO*	HORAS DE CONTACTO	HORAS TOTAIS DE TRABALHO	ECTS
10	S1,S2	30T; 15TP; 15OT	140	5

^{*} A-Anual;S-Semestral;Q-Quadrimestral;T-Trimestral

Precedências

Sem precedências

Conhecimentos Prévios recomendados

Conhecimentos adquiridos na Unidade Curricular de Matemática I

Objetivos de aprendizagem (conhecimentos, aptidões e competências)

Prosseguir a formação básica em Análise Matemática estendendo-se a IR n . Estudar e resolver equações diferencias ordinárias.

Em termos genéricos, pretende-se que o estudante desenvolva as suas capacidades de raciocínio indutivo e dedutivo, de aprofundar conhecimentos com objectividade, de exposição e tratamento dos conhecimentos que vão sendo adquiridos com clareza e rigor de linguagem.

Especificamente, o estudante deve dominar os conceitos envolvidos nos conteúdos programáticos e utilizá-los com destreza, e também, saber aplicá-los, com maleabilidade e sentido crítico, a outras disciplinas e a outras áreas científicas.

Conteúdos programáticos

Funções reais de mais de uma variável: Definição; Limites; Continuidade; Derivadas; Acréscimos e diferenciais; Derivada da função composta; Derivada da função implícita; Função homogénea; Derivadas direccionais; Gradiente; Extremos: Máximos, mínimos e pontos de sela.

Integrais múltiplos: Definição; Propriedades; Integrais duplos; Integrais triplos.

Equações diferenciais ordinárias: Introdução; Definições; Equações diferenciais de 1ª ordem; Separação de variáveis; Equação diferencial exacta; Factor integrante; Equação homogénea; Equação quase homogénea; Equação linear de 1ª ordem; Equação de Bernoulli. Equações diferenciais ordinárias de ordem superior; Definições; Equações redutíveis à 1ª ordem; Equações diferenciais lineares de ordem n: Equação linear homogénea de coeficientes constantes; Equação linear não homogénea de coeficientes constantes.

Metodologias de ensino (avaliação incluída)

Aulas Teóricas: exposição teórica dos conteúdos, alternada com exemplos práticos e interagindo com os alunos.

Aulas Teórico-Práticas: Resolução de exercícios (com pelo menos um exercício sobre cada ponto programático) após discussão com os alunos do enunciado, dos métodos a utilizar e do esclarecimento das dúvidas surgidas.

Orientação Tutorial: Esclarecimento de dúvidas.

Modo de Avaliação

A avaliação na UC apresenta duas modalidades, (i) avaliação por frequência e (ii) exame.

- (i) Avaliação por frequência: 2 testes (85%) e um conjunto de fichas de exercícios (15%). Para aprovação, é necessária uma classificação mínima de 8.0 valores nos testes e a média, dos testes e fichas de exercícios, igual ou superior a 10 valores.
- (ii) Exame: O exame é constituído por uma prova única, a realizar em calendário próprio. (Aprovado se nota >= 10 valores)

Os estudandes aprovados na avaliação por frequência (média igual ou superior a 10) estão dispensados do exame.

Bibliografia principal

Azenha, A. e Jerónimo, M.A. (2000). Elementos de Cálculo Diferencial e Integral em R e R n . McGraw-Hill

Apostol T. M. (1991). Cálculo. Vol. 2, Editorial Reverté

Demidovitch, B. (1993). Problemas e exercícios de Análise Matemática. McGraw-Hill

Ferreira, M. e Amaral, I. (1992). Matemática - Integrais Múltiplos e Equações Diferenciais, Sílabo

Ferreira, M. e Amaral, I. (1995). Matemática - Exercícios: Integrais múltiplos e Equações Diferenciais, Sílabo

Larson, R., Hostetler, P.H. e Edwards, B. H. (2006). Cálculo. Vol. I, McGraw-Hill

Piskounov, N. (1997) Cálculo Diferencial e Integral, Vol. I e II. Lopes da Silva Editora

Stewart, J. (1999). Cálculo Vol. I e II. Pioneira

Swokowski, E. W. (1983). Cálculo com Geometria Analítica. Vol. I, Ed. McGraw-Hill do Brasil, Lda

Wylie C. R., Barret L. C. (1985). Advanced Engineering Mathematics, 5 th edition, McGraw-Hill International Editions.

Academic Year	2020-21				
Course unit	MATHEMATICS II				
Courses	MECHANICAL ENGINEERING				
Faculty / School	INSTITUTE OF ENGINEERING				
Main Scientific Area					
Acronym					
Language of instruction	Portuguese				
Teaching/Learning modality	Classroom teaching				
Coordinating teacher	José Inácio de Jesus Rodrigues				

Teaching staff

José Inácio de Jesus Rodrigues

Paula Maria Custódio Ribeiro

Ana Bela Batista dos Santos

Type

OT; T; TP

OT; T; TP

OT; T; TP

Classes

T1; TP1; TP2; OT1; OT2

T1; TP1; OT1

T1; TP1; OT1

30T; 30TP; 30OT

20T; 10TP; 10OT

10T; 5TP; 5OT

Hours (*)

^{*} For classes taught jointly, it is only accounted the workload of one.

Contact hours

Т	TP	PL	TC	S	E	ОТ	0	Total
30	15	0	0	0	0	15	0	140

T - Theoretical; TP - Theoretical and practical; PL - Practical and laboratorial; TC - Field Work; S - Seminar; E - Training; OT - Tutorial; O - Other

Pre-requisites

no pre-requisites

Prior knowledge and skills

Mathematics I

The students intended learning outcomes (knowledge, skills and competences)

To pursue basic training in mathematical analysis extending to R ⁿ. To study and solve first-order ordinary differential equations and n th - order linear differential equations. In generic terms it is intended that the students develop their skills of inductive and deductive reasoning, to deepen knowledge with objectivity, clarity, and precision of language. Specifically, the student should master the concepts involved in curriculum, use them with dexterity, and also apply them with critical sense and flexibility to other disciplines and other scientific areas.

Syllabus

Real functions of two or more variables: Definition; Limits; Continuity; Partial Derivatives; total differentials; Chain Rule; Derivative of implicit function; Homogeneous function; Directional derivatives; Gradients; Extremes: minimum and maximum, saddle points.

Multiple integrals: Definition; Properties; Double integrals; Triple integrals.

Differential equations: Introduction; Definitions; First order differential equations; General methods of integration; Separable equations; Exact equations; Homogeneous equation; Almost homogeneous equation; First order linear equation; Bernoulli's equation; Higher order ordinary differential equations; Definitions; Equations reducible to the first-order; n th order linear differential equations: linear homogeneous equation with constant coefficients; linear non-homogeneous equation of constant coefficients.

Teaching methodologies (including evaluation)

Theoretical Lectures: exposition of the contents with practical examples.

Theoretical-practical lessons: Resolution of exercises of each programmatic point with discussion concerning the methods to be used and the clarification of the doubts.

Tutorial Orientation: Clarification of doubts about the resolution of exercises.

Evaluation

The assessment has two options, (i) evaluation by frequency and (ii) exam.

- (i) Assessment by frequency: 2 tests (85%) and a set of exercise sheets (15%). For approval, it is necessary to have a minimum score of 8.0 points in each test and the final average, of the tests and exercise sheets, equal to or greater than 10 points.
- (ii) Exam: The exams are carried out on a specific schedule, approved with minimum of 10 points (grading scale 0-20).

Students who pass the assessment by frequency (grade equal to or greater than 10 points) are exempt from the exam.

Main Bibliography

Azenha, A. e Jerónimo, M.A. (2000). Elementos de Cálculo Diferencial e Integral em R e R n . McGraw-Hill

Apostol T. M. (1991). Cálculo. Vol. 2, Editorial Reverté

Demidovitch, B. (1993). Problemas e exercícios de Análise Matemática. McGraw-Hill

Ferreira, M. e Amaral, I. (1992). Matemática - Integrais Múltiplos e Equações Diferenciais, Sílabo

Ferreira, M. e Amaral, I. (1995). Matemática - Exercícios: Integrais múltiplos e Equações Diferenciais, Sílabo

Larson, R., Hostetler, P.H. e Edwards, B. H. (2006). Cálculo. Vol. I, McGraw-Hill

Piskounov, N. (1997) Cálculo Diferencial e Integral, Vol. I e II. Lopes da Silva Editora

Stewart, J. (1999). Cálculo Vol. I e II. Pioneira

Swokowski, E. W. (1983). Cálculo com Geometria Analítica. Vol. I, Ed. McGraw-Hill do Brasil, Lda

Wylie C. R., Barret L. C. (1985). Advanced Engineering Mathematics, 5 th edition, McGraw-Hill International Editions.