

		English version at the end of this document
Ano Letivo	2018-19	
Unidade Curricular	TERMODINÂMICA	
Cursos	ENGENHARIA MECÂNICA (1.º ciclo)	
Unidade Orgânica	Instituto Superior de Engenharia	
Código da Unidade Curricular	14411011	
Área Científica	ENGENHARIA MECÂNICA	
Sigla		
Línguas de Aprendizagem	Português	
Modalidade de ensino	Presencial	
Docente Responsável	Celestino Rodrigues Ruivo	

DOCENTE TIPO DE AULA		TURMAS	TOTAL HORAS DE CONTACTO (*)		
Celestino Rodrigues Ruivo	OT; T; TP	T1; TP1; TP2; OT1; OT2	30T; 30TP; 30OT		

^{*} Para turmas lecionadas conjuntamente, apenas é contabilizada a carga horária de uma delas.

ANO	PERÍODO DE FUNCIONAMENTO*	HORAS DE CONTACTO	HORAS TOTAIS DE TRABALHO	ECTS
1º	S2	30T; 15TP; 15OT	140	5

^{*} A-Anual;S-Semestral;Q-Quadrimestral;T-Trimestral

Precedências

Sem precedências

Conhecimentos Prévios recomendados

Objetivos de aprendizagem (conhecimentos, aptidões e competências)

Fornecer aos estudantes uma sólida formação teórico-prática nos princípios fundamentais da termodinâmica, nomeadamente da primeira e segunda lei. Este conhecimento será essencial para apoiar futuras competências a desenvolver na área da Engenharia Mecânica, uma vez que a Termodinâmica é a ciência que lida primeiramente com a energia e com as suas transformações.

Competências:

- [C1] Adquirir conhecimentos sobre propriedades termodinâmicas.
- [C2] Conhecer as propriedades das substâncias puras.
- [C3] Capacidade para compreender e interpretar a Primeira Lei da Termodinâmica.
- [C4] Capacidade para aplicar a 1ª Lei a sistemas fechados e abertos.
- [C5] Capacidade para compreender e interpretar a Segunda Lei da Termodinâmica.
- [C6] Capacidade para aplicar a 2ª Lei.
- [C7] Capacidade para compreender e calcular o funcionamento dos ciclos de produção de trabalho
- [C8] Capacidade para compreender e calcular o funcionamento do ciclo frigorifico de compressão

Conteúdos programáticos

- 1. Conceitos fundamentais.
- 2. Propriedades termodinâmicas de substâncias puras. Propriedades do gás perfeito. Factor de compressibilidade. Diagramas e tabelas de propriedades.
- 3. Primeira Lei da Termodinâmica ? calor, trabalho, energia interna, entalpia. Calores específicos de sólidos, de líquidos e de gases perfeitos. Aplicação da 1ª Lei a sistemas fechados e a sistemas abertos.
- 4. Segunda Lei da Termodinâmica ? reversibilidade e irreversibilidade. Ciclo de Carnot e eficiência termodinâmica. Entropia. Variação de entropia de substâncias puras, de sólidos e de líquidos e de gases ideai s. Trabalho reversível e rendimentos isentrópicos de diversos dispositivos (compressor, turbina).
- 5. Relações Termodinâmicas ? Relações termodinâmicas gerais para a energia interna, entalpia, entropia e calores específicos e particularização para os gases ideais.
- 6. Ciclos Termodinâmicos: ciclos de produção de trabalho a gás e a vapor.
- 7. Ciclo frigorífico de compressão de vapor.

Metodologias de ensino (avaliação incluída)

A metodologia de aprendizagem desenvolve-se através das seguintes componentes:

Ensino Presencial

1. Ensino teórico (T)

Apresentação dos conteúdos da disciplina

Exemplificação e aplicação a problemas reais

2. Ensino teórico-prático (TP)

Modelação e resolução de problemas

Análise crítica dos resultados dos problemas

3. Orientação tutorial (OT)

Sessões de orientação pessoal onde se esclarecem dúvidas

Ensino Autónomo

Estudo

Leitura de excertos da bibliografia recomendada

Resolução dos exercícios recomendados

Avaliação de Conhecimentos:

1º Teste (50 %) + 2º Teste (50 %)

ou

Exame

Bibliografia principal

Yunus A. Çengel, Michael A. Boles, Termodinâmica, 5ª Ed., McGraw-Hill, 2006.

Michael J. Moran, Howard N. Shapiro, Fundamentals of Engineering Thermodynamics, 6 th Ed., John Wiley & Sons, Inc., 2008

Paulo Pimentel de Oliveira, Fundamentos de Termodinâmica Aplicada ? Análise Energética e Exergética, Lidel, 2012.

Clito Afonso, Termodinâmica para Engenharia ,1ª Ed. FEUP edições, 2012.

Academic Year	2018-19							
Course unit	THERMODYNAMICS							
Courses	MECHANICA	MECHANICAL ENGINEERING						
Faculty / School	Instituto Supr	Instituto Superior de Engenharia						
Main Scientific Area	ENGENHARIA MECÂNICA							
Acronym								
Language of instruction	Portuguese							
Teaching/Learning modality	Presential							
Coordinating teacher	Celestino Ro	drigues Ruivo						
Teaching staff		Туре	Classes	Hours (*)				
Celestino Rodrigues Ruivo		OT; T; TP	T1; TP1; TP2; OT1; OT2	30T; 30TP; 30OT				

^{*} For classes taught jointly, it is only accounted the workload of one.

Contact hours

Т	TP	PL	TC	S	E	ОТ	0	Т	otal
30	15	0	0	0	0	15	0	1	40

T - Theoretical; TP - Theoretical and practical; PL - Practical and laboratorial; TC - Field Work; S - Seminar; E - Training; OT - Tutorial; O - Other

Pre-requisites

no pre-requisites

Prior knowledge and skills

The students intended learning outcomes (knowledge, skills and competences)

Providing students with a solid theoretical and practical training in the fundamental principles of thermodynamics, particularly the first and second law. This knowledge will be essential to support the development of future skills in the area of Mechanical Engineering and, since Thermodynamics is the science that deals primarily with energy and its transformations.

Competences:

- [C1] Acquire knowledge about the thermodynamic properties.
- [C2] Know the properties of pure substances.
- [C3] Capacity to understand and interpret the First Law of Thermodynamics.
- [C4] Capacity to apply the 1st Law to closed and open systems.
- [C5] Capacity to understand and interpret the Second Law of Thermodynamics.
- [C6] Capacity to apply the 2nd Law.
- [C7] Ability to understand and calculate power cycles (gas and vapor)
- [C8] Ability to understand and calculate the compression refrigeration cycle

Syllabus

- 1. Fundamental concepts.
- 2. Thermodynamic properties of pure substances. Perfect gas properties. Compressibility factor. Diagrams and tables of properties.
- 3. First law of Thermodynamics? heat, work (various forms of work), internal energy, enthalpy. Specific heats of solids, liquids and gases. Application of first law to closed systems and open systems.
- 4. Second law of thermodynamics? reversibility and irreversibility. Carnot cycle and thermodynamic efficiency. Entropy variation of pure substances, solids and liquids and ideal gases. Reversible work and efficiency of various devices (compressor, turbine).
- 5. Thermodynamics relations? some general thermodynamic relations for the internal energy, enthalpy, entropy and specific heats
- 6. Thermodynamic power cycles (Brayton and Rankine)
- 7. Refrigeration cycle vapor compression.

Teaching methodologies (including evaluation)

The learning methodology is developed through the following components:

Classroom Teaching

- 1. Theoretical teaching (T)
- 1.1 Presentation of course content
- 1.2 Exemplification and application to real problems
- 2. Theoretical and practical teaching (TP)
- 2.1 Modelling and solving problems
- 2.2 Critical analysis of the results of problems
- 3. Tutorial teaching (OT)
- 3.1 Personal coaching sessions in small groups to conduct the learning process and clarify any doubts

Autonomous Learning

- 1. Studying
- 1.1 Studying of excerpts from recommended reading
- 1.2 Exercise solving from recommended problems.
- 2. E-learning

Evaluation:

1st written test (50 %) + 2nd Test (50 %) or Exam

Main Bibliography

Yunus A. Çengel, Michael A. Boles, Termodinâmica, 5ª Ed., McGraw-Hill, 2006.

Michael J. Moran, Howard N. Shapiro, Fundamentals of Engineering Thermodynamics, 6 th Ed., John Wiley & Sons, Inc., 2008

Paulo Pimentel de Oliveira, Fundamentos de Termodinâmica Aplicada ? Análise Energética e Exergética, Lidel, 2012.

Clito Afonso, Termodinâmica para Engenharia ,1ª Ed. FEUP edições, 2012.