

		English version at the end of this document
Ano Letivo	2022-23	
Unidade Curricular	INSTALAÇÕES FRIGORÍFICAS	
Cursos	ENGENHARIA MECÂNICA (1.º ciclo) - RAMO DE TÉRMICA (1.º ciclo)	
Unidade Orgânica	Instituto Superior de Engenharia	
Código da Unidade Curricular	14411053	
Área Científica	ENGENHARIA MECÂNICA	
Sigla		
Código CNAEF (3 dígitos)	521	
Contributo para os Objetivos de Desenvolvimento Sustentável - ODS (Indicar até 3 objetivos)	9	
Línguas de Aprendizagem	Português	

Modalidade de ensino

Aulas teóricas - Conceitos fundamentais e métodos de cálculo

Aulas teórico-práticas - Aplicação dos conceitos e algoritmos de cálculo

Tutoria - Acompanhamento na resolução de casos práticos

Docente Responsável

Armando da Conceição Costa Inverno

DOCENTE	TIPO DE AULA	TURMAS	TOTAL HORAS DE CONTACTO (*)
Armando da Conceição Costa Inverno	OT; T; TP	T1; TP1; OT1	14T; 28TP; 14OT
Isabel Maria Carneiro Ratão	OT; T	T1; OT1	1T; 1OT
Rui Mariano Sousa da Cruz	TP	TP1	2TP

^{*} Para turmas lecionadas conjuntamente, apenas é contabilizada a carga horária de uma delas.

ANO	PERÍODO DE FUNCIONAMENTO*	HORAS DE CONTACTO	HORAS TOTAIS DE TRABALHO	ECTS
30	S2	15T; 30TP; 15OT	140	5

^{*} A-Anual;S-Semestral;Q-Quadrimestral;T-Trimestral

Precedências

Sem precedências

Conhecimentos Prévios recomendados

- Conceitos básicos de Termodinâmica
- Conceitos básicos de Transmissão de Calor

Objetivos de aprendizagem (conhecimentos, aptidões e competências)

Complementar conhecimentos teóricos no domínio dos ciclos frigoríficos;

- Conhecer e interpretar os aspectos normativos e legais que enquadram esta área, com grande incidência em produtos perecíveis, e também as novas regras de utilização dos fluidos frigorigéneos;
- Desenvolver a capacidade de utilizar meios de cálculo que permitam o dimensionamento de instalações frigoríficas, nos domínios dos sistemas comerciais e industriais;
- Introdução e desenvolvimento da capacidade de análise comparativa para caracterização e eleição de uma solução que, do ponto de vista técnico e económico, represente o melhor compromisso;
- Ser capaz de caracterizar e selecionar equipamentos, materiais e soluções que permitam a implementação de sistemas;
- Aprendizagem de técnicas de abordagem aos problemas, bem como de utilização dos meios de cálculo e concepção, que venham a permitir uma fácil inserção e adaptação a futuras funções profissionais.

Conteúdos programáticos

1? O frio e suas aplicações

- Notas históricas
- Conservação de matérias-primas
- Regras de Monvoisin

2? Aplicação do frio aos alimentos

- Tipos de microrganismos
- Composição dos alimentos
- Efeito da congelação nos alimentos
- Desenvolvimento de microrganismos
- Sistema HACCP numa fábrica de congel

3 ? Cargas térmicas

- Caracterização das cargas térmicas
- Infiltrações e renovações de ar;
- Cálculo de cargas térmicas

4 ? Isolamentos

- Dimensionamento
- Materiais
- Barreiras ao Vapor de Água

5 ? Sistemas frigoríficos por compressão de vapor

- Ciclo teórico e ciclo prático por compressão de vapor;
- Análise paramétrica do ciclo.
- Sistemas de dois ou mais andares de compressão
- Refrigerantes

6? Equipamento

- Selecção de componentes
- Compressores
- Evaporadores
- Condensadores
- Dispositivos de expansão
- Equipamento de controlo

7 ? Escolha dos componentes do sistema

- Dimensionamento das linhas de refrigerante
- Controlo
- Resolução de casos práticos

Metodologias de ensino (avaliação incluída)

Aulas Teóricas ? exposição teórica dos conteúdos, por vezes com recurso a "power point", alternada com exemplos práticos e interagindo com os alunos.

Aulas Teórico-Práticas ? Resolução pelo docente de exercícios (com pelo menos um exercício sobre cada ponto programático) após discussão com os alunos do enunciado, dos métodos a utilizar e do esclarecimento das dúvidas surgidas.

Orientação Tutorial ? apontar soluções e caminhos possíveis e proceder a esclarecimento de dúvidas sobre a resolução de exercícios.

Modo de Avaliação:

- Resolução de um caso prático, individual, ou em grupos de dois alunos, com a classificação mínima de 10 valores, com o peso de 40% na classificação final;
- Teste (60% da nota final), a realizar no final do semestre, com a classificação mínima de 10 valores;
- Exame (60% da nota final), em época normal, de recurso ou especial, com a classificação mínima de 10 valores, em alternativa ao teste.

Bibliografia principal

Gosney, W.B.; Principles of Refrigeration; Cambridge University Press, [1982].

Stoecker, W.F., et al.; Refrigeration and Air Conditioning; Mc Graw Hill, Int.Stud. Ed., [1982]

ASHRAE, Handbook of Fundamentals

ASHRAE, Handbook of Refrigeration

ASHRAE, Handbook of Equipment

Rapin, P.J.; Installations Frigorifiques, Tome 2 / Pyc Edition, [1981]

Dossat, R.; Principles of Refrigeration

Ballot, G. et al; Isolation Frigorifique

Academic Year	2022-23
Course unit	REFRIGERATION INSTALLATIONS
Courses	MECHANICAL ENGINEERING - BRANCH THERMAL ENGINEERING
Faculty / School	INSTITUTE OF ENGINEERING
Main Scientific Area	
Acronym	
CNAEF code (3 digits)	521
Contribution to Sustainable Development Goals - SGD (Designate up to 3 objectives)	9
Language of instruction	English

Teaching/Learning modality

<u>Lectures</u> - theoretical exposition of contents <u>Theoretical and Practical</u> - Resolution of exercises <u>Tutorial</u>

Coordinating teacher

Armando da Conceição Costa Inverno

Teaching staff	Туре	Classes	Hours (*)
Armando da Conceição Costa Inverno	OT; T; TP	T1; TP1; OT1	14T; 28TP; 14OT
Isabel Maria Carneiro Ratão	OT; T	T1; OT1	1T; 1OT
Rui Mariano Sousa da Cruz	TP	TP1	2TP

^{*} For classes taught jointly, it is only accounted the workload of one.

Contact hours

Т	TP	PL	TC	S	E	ОТ	0	Total
15	30	0	0	0	0	15	0	140

T - Theoretical; TP - Theoretical and practical; PL - Practical and laboratorial; TC - Field Work; S - Seminar; E - Training; OT - Tutorial; O - Other

Pre-requisites

no pre-requisites

Prior knowledge and skills

- Basic knowledge of Thermodynamics
- Basic knowledge of Heat Transfer

The students intended learning outcomes (knowledge, skills and competences)

- Complementary theoretical knowledge in the field of refrigeration cycles;
- Understand and interpret the legal and regulatory aspects that surround this area, which are prevalent in perishable products, and also the new rules for the use of refrigerants;
- Provide calculation methods that allow the refrigeration systems design;
- Introduction and development of the capacity of comparative analysis for characterization and selection of a solution that, from a technical and economic point of view, represents the best compromise;
- Characterization of equipment, materials and solutions that allow systems implementation;

Provide the students with resources that will allow easy insertion and adaptation to future professional roles.

Syllabus

1 ? Cold and its applications

- 1.1 ? Historical Notes
- 1.2 ? Food and non food products
- 1.3 ? Monvoisin Rules

2? Cold applied to Food

- 2.1 ?Microorganisms
- 2.2 Food Composition
- 2.3 ? Freezing effects on Food
- 2.4 Microorganisms growth
- 2.5 ? HACCP

3 ? Thermal loads

- 3.1 ? Characterization of thermal loads
- 3.2 Calculation of thermal loads

4 ? Insulation

- 4.1 Design
- 4.2 Materials
- 4.3 Barriers to Water Steaming

5 ? Vapour Compression Refrigeration Systems

- 5.1 Theoretical and practical vapour compression cycle
- 5.2 Cycle parametric analysis

- 5.3 Cycles of two or more stages of compression
- 5.4 ? Refrigerant fluids

6 ? Main equipment

- 6.1 ? Compressors
- 6.2 Evaporators
- 6.3 ? Condensers
- 6.4 Expanding devices
- 6.5 Balance of refrigeration systems; control equipment

7? System components selection

- 7.1 ? Nominal power. Selection of major equipment. Dimensioning refrigerant circuits.
- 7.2 Control equipment
- 7.3 Practical cases

Teaching methodologies (including evaluation)

<u>Lectures</u> - theoretical exposition of content, alternating with practical examples and interacting with students.

<u>Theoretical and Practical</u> - Resolution of exercises (with at least one exercise for each programmatic point) after, discussion with students, methods used and clarification of doubts.

<u>Tutorial</u> - Clarification of doubts about solved exercises.

Evaluation:

- Resolution of a practical case, individually, or in groups of two students, with a minimum mark of 10 in 20, with a weight of 40% in the final classification;
- Test (60% of the final grade), to be carried out at the end of the semester, with a minimum mark of 10 in 20;
- Exam (60% of the final grade), in normal, appeal or special season, with a minimum mark of 10 in 20, as an alternative to the test.

Main Bibliography

Gosney, W.B.; Principles of Refrigeration; Cambridge University Press, [1982].

Stoecker, W.F., et al.; Refrigeration and Air Conditioning; Mc Graw Hill, Int.Stud. Ed., [1982]

ASHRAE, Handbook of Fundamentals

ASHRAE, Handbook of Refrigeration

ASHRAE, Handbook of Equipment

Rapin, P.J.; Installations Frigorifiques, Tome 2 / Pyc Edition, [1981]

Dossat, R.; Principles of Refrigeration

Ballot, G. et al; Isolation Frigorifique