

	English version at the end of this document
Ano Letivo	2022-23
Unidade Curricular	EMBALAGEM
Cursos	ENGENHARIA ALIMENTAR (1.º ciclo)
Unidade Orgânica	Instituto Superior de Engenharia
Código da Unidade Curricular	14451069
Área Científica	INDÚSTRIAS ALIMENTARES - CIÊNCIA E TECNOLOGIA DE ALIMENTOS
Sigla	
Código CNAEF (3 dígitos)	541
Contributo para os Objetivos de Desenvolvimento Sustentável - ODS (Indicar até 3 objetivos)	4; 9; 2
Línguas de Aprendizagem	Português.

	-											
n	n_{\prime}	~~	12	110	49	ıde	~~	\mathbf{a}		ne	ın	\sim
П١	"	J	ıa	ш	JО	ıuc	u	ᇉ	C	пэ		u

Presencial

Docente Responsável

Maria Margarida Cortês Vieira

DOCENTE	TIPO DE AULA	TURMAS	TOTAL HORAS DE CONTACTO (*)
Maria Margarida Cortês Vieira	OT; T; TP	T1; TP1; OT1	15T; 15TP; 10OT
Rui Mariano Sousa da Cruz	PL	PL1	30PL

^{*} Para turmas lecionadas conjuntamente, apenas é contabilizada a carga horária de uma delas.

ANO	PERÍODO DE FUNCIONAMENTO*	HORAS DE CONTACTO	HORAS TOTAIS DE TRABALHO	ECTS
2º	S2	15T; 15TP; 30PL; 10OT	140	5

^{*} A-Anual;S-Semestral;Q-Quadrimestral;T-Trimestral

Precedências

Sem precedências

Conhecimentos Prévios recomendados

Não aplicável

Objetivos de aprendizagem (conhecimentos, aptidões e competências)

- A. Transmitir conhecimentos sobre os materiais utilizados em embalagem alimentar, seus tipos, aplicações e controlo de qualidade.
- B. Transmitir conhecimentos sobre a influência da embalagem na estabilidade do produto (tempo de prateleira).
- C. Transmitir conhecimentos sobre processos inovadores de conservação de alimentos através da embalagem.

Conteúdos programáticos

- 1. História da embalagem, situação atual. Inovações. Mercado.
- 2. Definições de embalagem. Funções da embalagem. Níveis de embalagem.
- 3. Materiais rígidos
- 3.1. Vidro: Produção, características físico-químicas, suas interações com os alimentos
- 3.2. Metal: Produção da folha-de-flandres, produção do aço cromado por processo eletrolítico, produção de alumínio, processo de fabricação de latas, folha de alumínio e recipientes
- 4. Materiais Flexíveis
- 4.1. Papel: Produção de pastas de celulose
- 4.2. Plástico: Estrutura química e propriedades dos polímeros
- 5. Permeabilidade dos polímeros termoplásticos
- 5.1. Transferência de massa em estado estacionário e não estacionário
- 6. Laminados. Colas. Vedantes
- 7. Processos inovadores de conservação de alimentos
- 7.1. Embalagem com AM, inteligente, de libertação controlada e Processos combinados
- 8. Materiais biodegradáveis. Filmes edíveis e revestimentos associados
- 9. Previsão de tempo de prateleira com base na sensibilidade dos alimentos ao oxigénio e ao vapor de água

Metodologias de ensino (avaliação incluída)

Os temas serão tratados em aulas teóricas veiculadas pela docente com a revisão geral do assunto, cobrindo quer os tópicos fundamentais quer os aplicados.

Os alunos desenvolverão temas específicos, com uma discussão na turma mais aprofundada sobre esses temas.

Serão também resolvidos exercícios práticos que ilustram o conhecimento teórico.

Ainda na componente prática, os alunos desenvolverão um projeto em grupos onde serão desafiados a propor uma solução de embalagem para um alimento específico. Este trabalho resultará num relatório escrito.

A avaliação será feita do seguinte modo: Teste 40%, Tema desenvolvido 30% e Projeto 30%

Bibliografia principal

Muthu, S.S., 2015, Environmental Footprints of Packaging, Springer Singapore, 192pp.

Han, J.H. (ed.) (2013). Innovations in Packaging. Elsevier. Academic press, 624 pp.

Mathlouthi, M. Food Packaging and Preservation. Springer Science & Business Media, 275 pp.

Robertson, G.L. (ed.) (2009). Food Packaging and Shelf Life: A Practical Guide. CRC Press Taylor and Francis Group.

Han, J.H. (Ed.) (2007) Packaging for nonthermal Processing of food. Wiley-Blackwell.

Yam, K.L., Zhao, H. and Lai, C.C. (2004). Frozen Food Packaging, in Handbook of Frozen Foods, Hui, Y.H., Cornillon, P., Legarreta,

I.G., Lim M., Murrell, K.D. and Wai-Kit Nip. (Ed.s). Marcel Dekker.

Coles, R., McDowell, D. and Kirwan, M.J. (2004) Manual del envasado de alimentos y bebidas. AMV.

Giles G.A. and Bain, D.R. (Ed.s). (2001). Technology of plastics packaging for the consumer market. Series: Sheffield Packaging Technology.

Brody, A.L., Strupinsky, E. P., Kline, L.R. (2001). Active Packaging for Food Applications. CRC Press.

Academic Year	2022-23
Course unit	PACKING
Courses	FOOD ENGINEERING
Faculty / School	INSTITUTE OF ENGINEERING
Main Scientific Area	
Acronym	
CNAEF code (3 digits)	541
Contribution to Sustainable Development Goals - SGD (Designate up to 3 objectives)	4; 9; 2
Language of instruction	Portuguese.

Teaching/Learning modality	la associaci				
	In presence.				
Coordinating teacher	Maria Margarida Cortês	Vieira			
Teaching staff		Туре	Classes	Hours (*)	
Maria Margarida Cortês Vieira		OT; T; TP	T1; TP1; OT1	İ	15T; 15TP; 10O

* For classes taught jointly	it in anly accounted	the weekleed of one
* For classes faught jointly	it is only accounted	the workload of one.

Rui Mariano Sousa da Cruz

Т	TP	PL	TC	S	E	ОТ	0	Total
15	15	30	0	0	0	10	0	140

T - Theoretical; TP - Theoretical and practical; PL - Practical and laboratorial; TC - Field Work; S - Seminar; E - Training; OT - Tutorial; O - Other

Pre-requisites

no pre-requisites

Prior knowledge and skills

Not applicable.

The students intended learning outcomes (knowledge, skills and competences)

- A. Transfer knowledge about the materials used in food packaging, their types, applications and quality control.
- B. Transfer knowledge about the influence of packaging on product stability (shelf).
- C. Transfer knowledge about innovative processes of food conservation through the packaging.

30PL

Syllabus

- 1. Packing history, current situation. Innovations. The Market.
- 2. Definitions of packaging. Packaging functions. Packing levels.
- 3. Rigid materials
- 3.1. Glass: Production, physicochemical properties, their interactions with food
- 3.2. Metal: Tinplate production, electrolytic chrome steel production, aluminum production, can manufacturing process, aluminum foil and containers
- 4. Flexible Materials
- 4.1. Paper: Production of cellulose pulps
- 4.2. Plastic: Chemical structure and properties of polymers
- 5. Permeability of thermoplastic polymers
- 5.1. Mass transfer in steady and non-steady state
- 6. Laminates. Glues. Seals
- 7. Innovative processes in food preservation
- 7.1. Modified Atmosfer Packaging, Intelligent Packaging, controlled release and combined processes
- 8. Biodegradable materials. Edible films and associated coatings
- 9. Shelf life prediction based on food sensitivity to oxygen and water vapor

Teaching methodologies (including evaluation)

The different subjects will be approached in theoretical classes by the teacher with the general review of the subject, covering both fundamental and applied topics.

Students will develop specific topics, with a deep discussion on these topics.

Practical exercises that illustrate theoretical knowledge will also be solved.

In the practical component, students will also develop a project (team work) where they will be challenged to propose a packaging solution for a specific food product. This work will result in a written report.

The evaluation will be made as follows: Test 40%, Theme developed 30% and Project 30%

Main Bibliography

Muthu, S.S., 2015, Environmental Footprints of Packaging, Springer Singapore, 192pp.

Han, J.H. (ed.) (2013). Innovations in Packaging. Elsevier. Academic press, 624 pp.

Mathlouthi, M. Food Packaging and Preservation. Springer Science & Business Media, 275 pp.

Robertson, G.L. (ed.) (2009). Food Packaging and Shelf Life: A Practical Guide. CRC Press Taylor and Francis Group.

Han, J.H. (Ed.) (2007) Packaging for nonthermal Processing of food. Wiley-Blackwell.

Yam, K.L., Zhao, H. and Lai, C.C. (2004). Frozen Food Packaging, in Handbook of Frozen Foods, Hui, Y.H., Cornillon, P., Legarreta,

I.G., Lim M., Murrell, K.D. and Wai-Kit Nip. (Ed.s). Marcel Dekker.

Coles, R., McDowell, D. and Kirwan, M.J. (2004) Manual del envasado de alimentos y bebidas. AMV.

Giles G.A. and Bain, D.R. (Ed.s). (2001). Technology of plastics packaging for the consumer market. Series: Sheffield Packaging Technology.

Brody, A.L., Strupinsky, E. P., Kline, L.R. (2001). Active Packaging for Food Applications. CRC Press.