

		English version at the end of this document
Ano Letivo	2018-19	
Unidade Curricular	FÍSICA APLICADA À ENGENHARIA CIVIL	
Cursos	ENGENHARIA CIVIL (1.º ciclo)	
Unidade Orgânica	Instituto Superior de Engenharia	
Código da Unidade Curricular	14491002	
Área Científica	MATERIAIS E MECÂNICA DOS SÓLIDOS	
Sigla		
Línguas de Aprendizagem	Português	
Modalidade de ensino	Aulas presenciais	
Docente Responsável	David Alexandre de Brito Pereira	

DOCENTE	TIPO DE AULA	TURMAS	TOTAL HORAS DE CONTACTO (*)
David Alexandre de Brito Pereira	OT; T; TP	T1; TP2; OT2	30T; 30TP; 15OT
Elisa Maria de Jesus da Silva	OT; TP	TP1; OT1	30TP; 15OT

^{*} Para turmas lecionadas conjuntamente, apenas é contabilizada a carga horária de uma delas.

ANO	PERÍODO DE FUNCIONAMENTO*	HORAS DE CONTACTO	HORAS TOTAIS DE TRABALHO	ECTS
1º	S1	30T; 30TP; 15OT	140	5

^{*} A-Anual; S-Semestral; Q-Quadrimestral; T-Trimestral

Precedências

Sem precedências

Conhecimentos Prévios recomendados

Os discentes necessitam de possuir conhecimentos básicos de Física e de Matemática, que deverão resultar da sua formação no ensino secundário.

Objetivos de aprendizagem (conhecimentos, aptidões e competências)

A unidade curricular tem por objetivos a aprendizagem e compreensão dos princípios fundamentais da física mecânica numa abordagem relacionada com a Engenharia Civil, através da introdução de conceitos teóricos e de metodologias práticas associadas à resolução de problemas.

Conteúdos programáticos

- 1. Noções Gerais: Grandezas físicas; Cálculo vetorial.
- 2. Estática das partículas no plano: Equilíbrio de uma partícula; Diagrama de corpo livre.
- 3. Corpos rígidos e sistemas equivalentes de forças: Momento de uma força em relação a um ponto; Teorema de Varignon; Momento de uma força em relação a um eixo; Redução de um sistema de forças a uma força e a um binário.
- 4. Dinâmica de uma partícula: As três leis do movimento de Newton; Movimento Harmónico Simples.
- 5. Mecânica dos Fluidos: Distribuição hidrostática de pressões; Vasos comunicantes; Prensa hidráulica; Princípio de Arquimedes.
- 6. Centros de gravidade, momentos estáticos e estudo de forças distribuídas: Momentos estáticos e centros de gravidade de linhas e superfícies planas compostas; Teorema de Pappus-Guldinus.
- 7. Inércia de superfícies: Momentos de inércia de superfícies; Teorema de Steiner; Determinação dos eixos principais de inércia, momento de inércia máximo e momento de inércia mínimo; Círculo de Mohr.

Metodologias de ensino (avaliação incluída)

Aulas teóricas, de carácter expositivo, com utilização de apresentações em acetatos, e exemplos no quadro. Aulas teórico-práticas com resolução de exercícios associados às matérias expostas. Aulas de tutoria para esclarecimento de dúvidas sobre exercícios propostos.

- 1. Avaliação Contínua: Realização de duas frequências. A nota mínima de cada frequência deverá ser igual ou superior a 8 valores. A classificação final é obtida através da média das duas frequências realizadas. O aluno tem aprovação se a classificação final, arredondada à unidade, for igual ou superior a 10 valores.
- 2. Avaliação por Exame: O aluno obtém aprovação se a classificação, arredondada à unidade, for igual ou superior a 10 valores.
- 3. O aluno em que a classificação final é superior a 16 valores, é necessário a defesa de nota através da realização de uma prova oral perante um júri de, pelo menos, dois docentes. A não comparência conduz a uma classificação final de 16 valores.

Bibliografia principal

- Acetatos das aulas teóricas e sebenta de exercícios propostos para as aulas teórico-práticas.
- Almeida, G. "SISTEMA INTERNACIONAL DE UNIDADES (SI). GRANDEZAS E UNIDADES (SI)". Plátano Editora.
- Beer, F.; Johnston, E. "MECÂNICA VECTORIAL PARA ENGENHEIROS ESTÁTICA". McGraw-Hill.
- Deus, J.; Pimenta, M.; Noronha, A.; Penã, T. (2000). "INTRODUÇÃO À FÍSICA". McGraw-Hill.
- Giancoli, Douglas C.; (1998). "PHYSICS". Prentice Hall.
- Gispert, C. . "FÍSICA E QUIMICA". Enciclopédia Audio Visual Educativa.
- Indias, M. (1992). "CURSO DE FÍSICA". McGraw-Hill.
- Merian, J. (1985). "ESTÁTICA". Livros Técnicos e Científicos Editora.
- Noronha, A; Brogueira, P. (1994). "EXERCICIOS DE FÍSICA". McGraw-Hill.
- Resnik, R.; Halliday, D. (1984). "FÍSICA". Livros Técnicos e Científicos Editora S.A.
- Serway, R. (1982). "PHYSICS FOR SCIENTISTS & ENGINEERS WITH MODERN PHYSICS"
- Young, H.; Freedman, R. (1996). "UNIVERSITY PHYSICS". Addison-Wesley Publishing Company Inc.

Academic Year	2018-19					
Course unit	PHYSICS FOR CIVIL ENGINEERS					
Courses	CIVIL ENGINEERING (1st	Cycle)				
Faculty / School	Instituto Superior de Enger	nharia				
Main Scientific Area	MATERIAIS E MECÂNICA DOS SÓLIDOS					
Acronym						
Language of instruction	Portuguese					
Teaching/Learning modality	Lessons in the classroom					
Coordinating teacher	David Alexandre de Brito P	Pereira				
Teaching staff		Туре	Classes	Hours (*)		
David Alexandre de Brito Pere	ra	OT; T; TP	T1; TP2; OT2	30T; 30TP; 15OT		
Elisa Maria de Jesus da Silva		OT; TP	TP1; OT1	30TP; 15OT		

Elisa Maria de Jesus da Silva

* For classes taught jointly, it is only accounted the workload of one.

Contact hours

Т	TP	PL	TC	S	E	ОТ	0	Total
30	30	0	0	0	0	15	0	140

T - Theoretical; TP - Theoretical and practical; PL - Practical and laboratorial; TC - Field Work; S - Seminar; E - Training; OT - Tutorial; O - Other

Pre-requisites

no pre-requisites

Prior knowledge and skills

The students need a basic understanding of physics and mathematics, which should result in formation of their secondary education.

The students intended learning outcomes (knowledge, skills and competences)

The unit aims to learning and understanding of the fundamental principles of mechanical physics approach related to Civil Engineering, through the introduction of theoretical concepts and practical methods with the resolution of problems.

Syllabus

- 1. Units, physical quantities and vectors: physical quantities; vector.
- 2. Statics of particles in the plane: Forces acting on a particle; a free-body diagram.
- 3.Rigid bodies and equivalent systems of forces: Moment of a force about a point; Varignon Theorem; Moment of a force about an axis; Replacement of a force acting on a point by a force acting at another point and torque; Reduction of a system of forces to a force and torque.
- 4.Newton's laws of motion, elasticity and oscillations: The three laws of motion Newton; Simple Harmonic Motion.
- 5.Fluid Mechanics: hydrostatic pressure distribution; communicating vessels; hydraulic press; Archimedes' Principle.
- 6.Centers of gravity, moments and static study of distributed forces: static moments and centers of gravity lines and flat surfaces composed; Theorem of Pappus-Guldinus.
- 7.Inertia surfaces: Moments of inertia surfaces; Theorem of Steiner's parallel axis; Determination of the principal axes of inertia; Mohr's Circle.

Teaching methodologies (including evaluation)

Lectures, expository in nature, using OHP presentations, and examples on the board. Theoretical and practical classes where the teacher complements the teaching, solving exercises associated with raw exposed. Tutoring classes, where students answer questions about the proposed exercises.

- 1.Continuous Assessment: Continuous assessment will be done by performing two tests. The minimum grade of each, must be equal to or above eight. The student's final grade is obtained from the average of two tests performed. Students who obtain a grade of ten or more are approved.
- 2.Assessment Examination: Students who obtain a grade of ten or more are approved.
- 3.Oral defense of greater than sixteen: Students who obtain a grade greater than sixteen, obtained in any of the types of evaluation, has to defend the statement by performing an oral defence work before a jury of at least two teachers. The no-show at this time of assessment, means staying with the final grade of sixteen.

Main Bibliography

- Almeida, G. "SISTEMA INTERNACIONAL DE UNIDADES (SI). GRANDEZAS E UNIDADES (SI)". Plátano Editora.
- Beer, F.; Johnston, E. "MECÂNICA VECTORIAL PARA ENGENHEIROS ESTÁTICA". McGraw-Hill.
- Deus, J.; Pimenta, M.; Noronha, A.; Penã, T. (2000). "INTRODUÇÃO À FÍSICA". McGraw-Hill.
- Giancoli, Douglas C.; (1998). "PHYSICS". Prentice Hall.
- Gispert, C. ."FÍSICA E QUIMICA". Enciclopédia Audio Visual Educativa.
- Indias, M. (1992). "CURSO DE FÍSICA". McGraw-Hill.
- Merian, J. (1985). "ESTÁTICA". Livros Técnicos e Científicos Editora.
- Noronha, A; Brogueira, P. (1994). "EXERCICIOS DE FÍSICA". McGraw-Hill.
- Resnik, R.; Halliday, D. (1984). "FÍSICA". Livros Técnicos e Científicos Editora S.A.
- Serway, R. (1982). "PHYSICS FOR SCIENTISTS & ENGINEERS WITH MODERN PHYSICS"