

	English version at the end of this document
Ano Letivo	2018-19
Unidade Curricular	SISTEMAS LINEARES
Cursos	ENGENHARIA ELÉTRICA E ELETRÓNICA (2.º Ciclo) ÁREA DE ESPECIALIZAÇÃO EM SISTEMAS DE ENERGIA E CONTROLO
Unidade Orgânica	Instituto Superior de Engenharia
Código da Unidade Curricular	14771012
Área Científica	ENGENHARIA ELECTROTÉCNICA
Sigla	
Línguas de Aprendizagem	Português
Modalidade de ensino	Presencial
Docente Responsável	Isménio Lourenço Eusébio Martins

DOCENTE	TIPO DE AULA	TURMAS	TOTAL HORAS DE CONTACTO (*)		
Isménio Lourenço Eusébio Martins	OT; T; TP	T1; TP1; OT1	30T; 30TP; 5OT		

^{*} Para turmas lecionadas conjuntamente, apenas é contabilizada a carga horária de uma delas.

ANO	PERÍODO DE FUNCIONAMENTO*	HORAS DE CONTACTO	HORAS TOTAIS DE TRABALHO	ECTS
1º	S1	30T; 30TP; 5OT	280	10

^{*} A-Anual;S-Semestral;Q-Quadrimestral;T-Trimestral

Precedências

Sem precedências

Conhecimentos Prévios recomendados

Conhecimentos recomendados: física, matemática, álgebra, análise de circuitos, controlo automático e inglês.

Objetivos de aprendizagem (conhecimentos, aptidões e competências)

- 1. Saber construir modelos de sistemas físicos.
- 2. Saber analisar sistemas lineares.
- 3. Compreender e utilizar métodos de determinação da estabilidade.
- 4. Saber utilizar métodos de estabilização de sistemas.
- 5. Compreender a teoria dos sistemas lineares e a sua aplicação.
- 6. Utilizar a teoria dos sistemas lineares em casos concretos.

Conteúdos programáticos

- 1. Modelação, representação matemática, classificação e caracterização
- 2. Representações entrada saída no domínio do tempo
- 3. Representações entrada saída no domínio da frequência
- 4. Representação de estado, equação dinâmica e de saída
- 5. Cálculo da matriz de transição de sistemas variantes no tempo
- 6. Fórmula da variação das constantes
- 7. Controlabilidade de sistemas lineares multivariáveis variantes no tempo
- 8. Controlabilidade no sentido entrada saída
- 9. Observabilidade de sistemas lineares multivariáveis variantes no tempo
- 10. Estabilidade de Sistemas multivariáveis com recurso aos métodos clássicos
- 11. Estabilidade de Sistemas no sentido de Lyapunov
- 12. Estabilização de sistemas utilizando o Gramiano de Controlabilidade e o 2º Método de Lyapunov

Metodologias de ensino (avaliação incluída)

Exposição teórica dos conteúdos, com recurso a acetatos ou ao ?power point?, alternada com exemplos práticos e interagindo com os alunos. Orientação dos trabalhos da disciplina. Utilização de ferramentas informáticas como o MATLAB e o Simulink.

Modo de Avaliação

- 1. Participação nas aulas 10%
- 2. Um teste de avaliação 60% ou Exame final 60%
- 3. Apresentação de um trabalho final 30% (Obrigatório, com classificação >= 10 Valores).

Bibliografia principal

- Ribeiro, I.: Análise de Sistemas Lineares, IST Press, Lisboa 2002.
- Chen Chi-Tsong: Linear Systyem Theory and Design, Holt, Rinehart and Winston, New York, 1984.
- Desoer C. A.: Notes for a Second Course on Linear Sistems, Van Nostrand Reinhold Company, 1970
- Shahian B., Hassul M.: Control systems Design using MATLAB
- Brogan W.L.: Modern Control Teory; Prentice Hall, 1985
- Ogata K.: Engenharia do Controlo Moderno; Prentice Hall, 1982
- D'Azzo and Houpis: Sistemas de Controlo Lineares, 1981

Academic Year	2018-19					
Course unit	LINEAR SYSTEMS					
Courses	ELECTRICAL AND ELECTRO ÁREA DE ESPECIALIZAÇ			ROLO		
Faculty / School	Instituto Superior de Engenha	ria				
Main Scientific Area	ENGENHARIA ELECTROTÉC	CNICA				
Acronym						
Language of instruction	Portuguese					
Teaching/Learning modality	Classroom teaching					
Coordinating teacher	Isménio Lourenço Eusébio Ma	artins				
Teaching staff		Туре	Classes	Hours (*)		
Isménio Lourenço Eusébio Marti	ns	OT; T; TP	T1; TP1; OT1		30T; 30TP; 5OT	

^{*} For classes taught jointly, it is only accounted the workload of one.

Contact hours

Т	TP	PL	TC	S	E	ОТ	0	Total
	30	0	0	0	0	5	0	280

T - Theoretical; TP - Theoretical and practical; PL - Practical and laboratorial; TC - Field Work; S - Seminar; E - Training; OT - Tutorial; O - Other

Pre-requisites

no pre-requisites

Prior knowledge and skills

Recommended knowledge: physics, mathematics, algebra, analysis of circuits, automatic control, and English.

The students intended learning outcomes (knowledge, skills and competences)

- 1. Learn to build models of physical systems.
- 2. Learn to analyze linear systems.
- 3. Understand and use methods of determination of stability.
- 4. Learn to use system stabilization methods.
- 5. Understand the theory of linear systems and its application.
- 6. Using the theory of linear systems in specific cases.

Syllabus

- 1. Modelling, mathematical representation, classification and characterization of systems.
- 2. Input-output representations in the time domain.
- 3. Input-output representations in frequency domain
- 4. State representation, dynamic and output equations.
- 5. Time-variant systems transition matrix of calculation.
- 6. Variation of constants formula.
- 7. Controllability of linear multivariable time-variant systems.
- 8. Input-output controllability.
- 9. Observability of linear Multivariable time-variant systems
- 10. Stability of multivariable systems using the classical methods.
- 11. System stability in the sense of Lyapunov.
- 12. Systems stabilisation, using the controllability Gramian and the 2nd Method of Lyapunov.

Teaching methodologies (including evaluation)

Theoretical exposition of the contents, using "power point", alternated with practical examples and interacting with students. Final work guidance. Use of software tools such as MATLAB and Simulink.

Evaluation Mode

- 1. Participation in class 10%
- 2. An assessment test (60%) or a final exam (60%)
- 3. Final work presentation 30% (Required rate > = 10 points).

Main Bibliography

- Ribeiro, I.: Análise de Sistemas Lineares, IST Press, Lisboa 2002.
- Chen Chi-Tsong: Linear Systyem Theory and Design, Holt, Rinehart and Winston, New York, 1984.
- Desoer C. A.: Notes for a Second Course on Linear Sistems, Van Nostrand Reinhold Company, 1970
- Shahian B., Hassul M.: Control systems Design using MATLAB
- Brogan W.L.: Modern Control Teory; Prentice Hall, 1985
- Ogata K.: Engenharia do Controlo Moderno; Prentice Hall, 1982
- D'Azzo and Houpis: Sistemas de Controlo Lineares, 1981

