

	English version at the end of this document
Ano Letivo	2018-19
Unidade Curricular	REDES ENERGÉTICAS INTELIGENTES
Cursos	ENGENHARIA ELÉTRICA E ELETRÓNICA (2.º Ciclo) (*) ÁREA DE ESPECIALIZAÇÃO EM SISTEMAS DE ENERGIA E CONTROLO ÁREA DE ESPECIALIZAÇÃO EM TECNOLOGIAS DA INFORMAÇÃO E TELECOMUNICAÇÕES
	(*) Curso onde a unidade curricular é opcional
Unidade Orgânica	Instituto Superior de Engenharia
Código da Unidade Curricular	14771112
Área Científica	ENGENHARIA ELECTROTÉCNICA
Sigla	
Línguas de Aprendizagem	Português.
Modalidade de ensino	Presencial.
Docente Responsável	Jânio Miguel Evangelista Ferreira Monteiro

DOCENTE	TIPO DE AULA	TURMAS	TOTAL HORAS DE CONTACTO (*)
Jânio Miguel Evangelista Ferreira Monteiro	OT; PL; T	T1; PL1; OT1	18T; 18PL; 3OT
António João Freitas Gomes da Silva	OT; PL; T	T1; PL1; OT1	6T; 6PL; 1OT
Luís Manuel Ramos de Oliveira	OT; PL; T	T1; PL1; OT1	6T; 6PL; 1OT

^{*} Para turmas lecionadas conjuntamente, apenas é contabilizada a carga horária de uma delas.

ANO	PERÍODO DE FUNCIONAMENTO*	HORAS DE CONTACTO	HORAS TOTAIS DE TRABALHO	ECTS
2º,1º	S1	24T; 9TP; 27PL; 20OT	280	10

^{*} A-Anual;S-Semestral;Q-Quadrimestral;T-Trimestral

Precedências

Sem precedências

Conhecimentos Prévios recomendados

Conhecimentos standard de Engenharia Eletrotécnica. Em virtude de a UC requerer a integração de técnicos com conhecimentos de especialidades distintas, a UC será lecionada de forma *self-contained*.

Objetivos de aprendizagem (conhecimentos, aptidões e competências)

Os objetivos desta UC passam por capacitar os alunos com um leque alargado de conhecimentos e competências em Redes Energéticas Inteligentes, que incluam:

- Planear, executar e interpretar resultados de uma auditoria de energia elétrica;
- Identificar as oportunidades e elaborar planos de racionalização de consumos;
- Conhecer e os desafios da integração distribuída e controlo de fontes de energia renovável em redes energéticas de baixa tensão;
- Desenvolver sistemas de Internet das Coisas (IoT) que permitam monitorizar e controlar a rede elétrica;
- Desenvolver sistemas de ajuste produção-consumo;
- Desenvolver mecanismos inteligentes de deteção de consumos anómalos;
- Desenvolver sistemas inteligentes de controlo de carga e descarga de baterias;
- Perceber o desafio da integração de veículos elétricos na rede elétrica;
- Desenvolver sistemas inteligentes de controlo de carga de veículos elétricos;
- Integrar na Rede Elétrica Inteligente aparelhos de medição remotos e autónomos.

Conteúdos programáticos

Parte I: Gestão de energia: Auditorias energéticas e planos de racionalização de consumos. Regulamentação. Sistemas tarifários. Gestão do lado da procura de energia. Controlo e desvio de consumos. Oportunidades de racionalização de consumos: compensação de FP; transformadores, sistemas de iluminação; sistemas de força motriz.

Parte II: Sistemas de Monitorização e Controlo em Redes Energéticas Inteligentes

- i) Sistemas de Monitorização em Plataformas IoT
- Integração SCADA & IoT;
- Protocolos para Smart Grids;
- ii) Inteligência em Redes Energéticas
- Sistemas de Apoio à Decisão e de Deteção de Consumos Anómalos;
- Ajuste Automático Produção Consumo;
- Controlo de carga de Veículos Elétricos;

Parte III: Micro captação de energia

- Projeto de sistemas de sensores de rede remotos e autónomos;
- Sensores e atuadores;
- Microcaptação de energia;
- Armazenamento de energia;
- Gestão energética do processamento e comunicação das medidas;
- Implementação de um sistema de sensores de rede remotos e autónomos;

Metodologias de ensino (avaliação incluída)

Metodologias de Ensino

Esta UC é orientada ao desenvolvimento de soluções e por isso os conhecimentos teóricos serão complementados com laboratórios por forma a que os alunos aprendam a fazer. Os métodos de ensino incluirão:

- Aulas Teóricas e T/P de Exercícios,
- Aulas Laboratoriais com equipamento,
- Aulas de Tutoria através de conteúdos de auto-estudo.
- Estudo individualizado e em grupo.
- Trabalhos em grupo e/ou individual.

Avaliação

A classificação final será obtida considerando as seguintes percentagens e componentes:

Componente Teórica: 60%

Componente Prática: 40%

Os alunos terão que obter uma classificação mínima de 9 valores em cada uma das componentes.

A Componentes Teórica será avaliadas através de uma Frequência única ou um Exame.

Na Componentes Prática os alunos irão implementar vários trabalhos e/ou relatórios das atividades realizadas durante as aulas.

Bibliografia principal

- [1] Roteiro da Disciplina disponibilizado pelos docentes.
- [2] Centro para a Conservação da Energia: "Manual do Gestor de Energia", Lisboa, 1997.
- [3] A. T. Almeida: "Manual Técnico de Gestão de Energia", 2007.
- [4] D. R. Wulfinghoff: "Energy Efficiency Manual", Energy Institute Press, 2000.
- [5] J. Ekanayake, K, Liyanage, J., Wu, A., Yokoyama, N. Jenkins, "Smart Grid Technology And Applications," John Wiley & Sons, 2012.
- [6] Jean-Philippe Vasseur, Adam Dunkels, "Interconnecting Smart Objects with IP: The Next Internet", Morgan Kaufmann Publishers, 2010.
- [7] Kenneth C. Budka, Jayant G. Deshpande, Marina Thottan, "Communication Networks for Smart Grids", Springer, 2014.
- [8] Janaka Ekanayake, Kithsiri Liyanage, JianzhongWu, Akihiko Yokoyama, Nick Jenkins, "Smart Grid Technology and Applications", Wiley, 2012.
- [9] Artigos científicos a disponibilizar pelos docentes.

Academic Year	2018-19
Course unit	SMART GRIDS
Courses	ELECTRICAL AND ELECTRONICS ENGINEERING (*) ÁREA DE ESPECIALIZAÇÃO EM SISTEMAS DE ENERGIA E CONTROLO ÁREA DE ESPECIALIZAÇÃO EM TECNOLOGIAS DA INFORMAÇÃO E TELECOMUNICAÇÕES
	(*) Optional course unit for this course
Faculty / School	Instituto Superior de Engenharia
Main Scientific Area	ENGENHARIA ELECTROTÉCNICA
Acronym	
Language of instruction	Portuguese.
Teaching/Learning modality	Presential.
Coordinating teacher	Jânio Miguel Evangelista Ferreira Monteiro

Teaching staff	Type Classes		Hours (*)	
Jânio Miguel Evangelista Ferreira Monteiro	OT; PL; T	T1; PL1; OT1	18T; 18PL; 3OT	
António João Freitas Gomes da Silva	OT; PL; T	T1; PL1; OT1	6T; 6PL; 1OT	
Luís Manuel Ramos de Oliveira	OT; PL; T	T1; PL1; OT1	6T; 6PL; 1OT	

^{*} For classes taught jointly, it is only accounted the workload of one.

Contact hours

Т	TP	PL	TC	S	E	ОТ	0	Total
24	9	27	0	0	0	20	0	280

T - Theoretical; TP - Theoretical and practical; PL - Practical and laboratorial; TC - Field Work; S - Seminar; E - Training; OT - Tutorial; O - Other

Pre-requisites

no pre-requisites

Prior knowledge and skills

Standard knowledge of Electrical and Electronics Engineering. Given the fact that the CU will require the integration of technical knowledge from different specialties, it will be taught in a self-contained manner.

The students intended learning outcomes (knowledge, skills and competences)

The objectives of this CU is to give students the ability to know and of develop a range of skills in Smart Grids, to:

- Plan, implement, and evaluate the results of an energy audit.
- Identify opportunities for energy savings and implement plans for the rationalization of energy consumptions
- Identify the challenges of integrating distributed renewable energy sources in low voltage networks;
- Develop Internet of Things (IoT) systems to monitor and control the power grid;
- Develop systems for demand side management and generation control;
- Develop intelligent mechanisms for the detection of abnormal consumption;
- Develop intelligent mechanisms control the charging and discharge of batteries;
- Understand the challenge of integration of electrical vehicles into the grid;
- Develop intelligent systems for load control of electrical vehicles;
- Integrating Smart Grid remote measuring and autonomous devices.

Syllabus

Part I: Energy management

Energy audits and plans for rationalization of consumption. Regulations. Tariff systems. Peak power demand control. Demand Side Management. Opportunities for rationalization of consumption: power factor correction; efficient lighting; transformers; efficient use of electric motors

Part II: Monitoring and Control Systems for Smart Grids

- i) Monitoring Systems using IoT Platforms:
- Integration of SCADA & IoT;
- Protocols for Smart Grids,
- ii) Intelligence in Smart Grids:
- Decision Support Algorithms and Anomaly Detection of Consumption;
- Demand Response mechanisms;
- Charge control of Electrical Vehicles;

Part III: Energy Harvesting in Smart Grids

- Project of remote and autonomous sensor network systems;
- Sensors and actuators;
- Microgeneration;
- Energy storage;
- Energy management of the processing and communication of the measures;
- Implementation of a remote and autonomous sensor network system;

Teaching methodologies (including evaluation)

Teaching and Learning Methods

This course is oriented to the development of solutions and therefore the theoretical knowledge will be complemented by laboratory classes enabling students to be able of implement them. The teaching/learning methods will include:

- Theory and T/P classes of problem solving,
- Laboratorial classes with professional equipment,
- Tutorial classes and self-studying.
- Individual and in group classes.
- Group and individual laboratorial work.

Assessment

In terms of grading, the final score will consider the following components and percentages:

- Theory: 60%
- Practical: 40%

Students will need to achieve a minimum classification 9, in each of these components. The score of theoretical component will result from a written test or exam.

In the Practical component students will implement one or more projects and lab based implementations previously agreed with the teacher.

Main Bibliography

- [1] Course text prepared by the lecturers.
- [2] Centro para a Conservação da Energia: "Manual do Gestor de Energia", Lisboa, 1997.
- [3] A. T. Almeida: "Manual Técnico de Gestão de Energia", 2007.
- [4] D. R. Wulfinghoff: "Energy Efficiency Manual", Energy Institute Press, 2000.
- [5] J. Ekanayake, K, Liyanage, J., Wu, A., Yokoyama, N. Jenkins, "Smart Grid Technology And Applications," John Wiley & Sons, 2012.
- [6] Jean-Philippe Vasseur, Adam Dunkels, "Interconnecting Smart Objects with IP: The Next Internet", Morgan Kaufmann Publishers, 2010.
- [7] Kenneth C. Budka, Jayant G. Deshpande, Marina Thottan, "Communication Networks for Smart Grids", Springer, 2014.
- [8] Janaka Ekanayake, Kithsiri Liyanage, JianzhongWu, Akihiko Yokoyama, Nick Jenkins, "Smart Grid Technology and Applications", Wiley, 2012.
- [9] Scientific papers given by the lecturers.