

		English version at the end of this document
Ano Letivo	2020-21	
Unidade Curricular	COMPUTAÇÃO GRÁFICA	
Cursos	ENGENHARIA INFORMÁTICA (1.º ciclo)	
Unidade Orgânica	Faculdade de Ciências e Tecnologia	
Código da Unidade Curricular	14781057	
Área Científica	CIÊNCIA DE COMPUTADORES	
Sigla		
Línguas de Aprendizagem	Português	
Modalidade de ensino	Presencial	
Docente Responsável	Maria Margarida da Cruz Silva Andrade Madeira e	e Carvalho de Moura

DOCENTE	TIPO DE AULA	TURMAS	TOTAL HORAS DE CONTACTO (*)
Maria Margarida da Cruz Silva Andrade Madeira e Carvalho de Moura	Т	T1	28T
Sérgio Manuel Machado Jesus	PL	PL1; PL2	56PL

^{*} Para turmas lecionadas conjuntamente, apenas é contabilizada a carga horária de uma delas.

ANO	PERÍODO DE FUNCIONAMENTO*	HORAS DE CONTACTO	HORAS TOTAIS DE TRABALHO	ECTS
30	S2	28T; 28PL	156	6

^{*} A-Anual; S-Semestral; Q-Quadrimestral; T-Trimestral

Precedências

Sem precedências

Conhecimentos Prévios recomendados

Não se aplica

Objetivos de aprendizagem (conhecimentos, aptidões e competências)

Na conclusão bem sucedida desta unidade curricular, os estudantes terão uma visão geral da computação gráfica, em duas e em três dimensões, sendo que:

- são capazes de identificar e descrever os aspetos envolvidos na pipeline de visualização
- são capazes de utilizar técnicas básicas para criar modelos de objetos baseados em polígonos e atributos de vértices
- conhecem modelos de iluminação e técnicas de sombreamento para sistemas gráficos baseados em rasterização de polígonos
- são capazes de criar uma aplicação gráfica simples, incluindo cenas com animações, recorrendo a uma API.

Conteúdos programáticos

Introdução geral, aplicações, arte gráfica, visualização científica.

Introdução às primitivas (pixéis, sectores, Bresenham, polyline, midpoint, curvas, encher áreas), atributos (tipos de linhas, áreas, texto, cores), e antialiasing.

Janelas, coordenadas (homogéneas), transformações geométricas em duas dimensões, e clipping.

Representações de objetos em 3 dimensões.

Transformações em 3 dimensões, visualização, projeções, perspetiva, e a deteção de superfícies visíveis.

Modelos de iluminação e surface rendering (fontes, reflecção, transparência, sombrear, Gouraud, Phong, traçado de raios).

Modelos de cores.

Metodologias de ensino (avaliação incluída)

Todos os conceitos básicos são introduzidos nas aulas teóricas, com uma organização que segue a de muitos livros sobre a matéria. Nas aulas PL, os alunos são acompanhados na aprendizagem de modelos (2D e 3D) de objetos, na produção de animações com translações e rotações, e inclusão de alguns aspetos avançados como a projeção com perspetiva e o mapeamento de textura.

A avaliação usa a modalidade de avaliação por frequência. Todos os alunos são admitidos a exame.

O exame (E) é prova individual, com eventual suporte computacional. A parte da avaliação (PL) feita ao longo do funcionamento da unidade curricular é realizada por meio de trabalhos práticos ou de síntese, que poderão requerer apresentação e discussão. A nota final será F = 0.40 * E + 0.60 * PL, não havendo lugar a provas complementares.

Bibliografia principal

Learn OpenGL, Joey de Vries, https://learnopengl.com/book/learnopengl_book.pdf, CC BY-NC 4.0, 2020.

Computer Graphics, D. Hearn e M.P. Baker, Prentice Hall Intl Eds, 1994.

Computer Graphics, Principles and Practice, Foley et al., Addison-Wesley, 1993.

3D Computer Graphics, A. Watt, Addison-Wesley, 2nd Ed. 1993.

Advanced Animation and Rendering Techniques, Watt and Watt, ACM Press, 1992

Academic Year	2020-21					
Course unit	COMPUTER GRAPHICS					
Courses	INFORMATICS (COMPUTER SCIENCE) (1st Cycle)					
Faculty / School	FACULTY OF SCIENCES AND TECHNOLOGY					
Main Scientific Area						
Acronym						
Language of instruction	Portuguese					
Teaching/Learning modality	Face to face learning					
Coordinating teacher	inating teacher Maria Margarida da Cruz Silva Andrade Madeira e Carvalho de Moura					
Teaching staff		Туре	Classes	Hours (*)		
Maria Margarida da Cruz Silva	Andrade Madeira e Carvalho de Moura	Т	T1	28T		

56PL

PL1; PL2

Sérgio Manuel Machado Jesus

* For classes taught jointly, it is only accounted the workload of one.

Contact hours

Т	TP	PL	TC	S	E	ОТ	0	Total
28		28	0	0	0	0	0	156

T - Theoretical; TP - Theoretical and practical; PL - Practical and laboratorial; TC - Field Work; S - Seminar; E - Training; OT - Tutorial; O - Other

Pre-requisites

no pre-requisites

Prior knowledge and skills

Not applicable

The students intended learning outcomes (knowledge, skills and competences)

Upon successful completion of this course, students will have an overview of computer graphics, in two and three dimensions, therefor:

- are able to identify and describe the aspects involved in the visualization pipeline
- are able to use basic techniques to create object models based on polygons and vertex attributes
- know lighting models and shading techniques for graphic systems based on polygon rasterization
- are able to create a simple graphics application, including scenes with animations, using an API.

Syllabus

General introduction, applications, graphical arts, scientific visualisation.

Introduction to primitives (pixels, vectors, Bresenham, polyline, midpoint, curves, area filling), attributes (tipes of lines, areas, text, colours), and antialiasing.

Windows, coordinates (homogeneous), geometric transformations in two dimensions, and clipping.

3D object representations.

Transformations in 3 dimensions, visualisation, projections (perspective), and the detection of visible surfaces.

Illumination models and surface rendering (light sources, diffuse and specular reflections, transparency, shading, Gouraud, Phong, ray tracing).

Colour models.

Teaching methodologies (including evaluation)

All basic concepts are introduced in the theoretical classes, with an organization that follows that of many books on the subject. In PL classes, students are accompanied in the learning of models (2D and 3D) of objects, in the production of animations with translations and rotations, and inclusion of some advanced aspects such as perspective projection and texture mapping.

The evaluation uses the modality of $\underbrace{valuation\ by\ frequency}$, as defined in the general regulations of the university. All students are admitted to $\underbrace{t\ h\ e}$

Examination (E) is an individual exam, eventually with computer support. Part of the assessment (PL) is made during the course of the pratical classes and may require presentation and discussion. The final grade will be F = 0.40 * E + 0.60 * PL, with no further tests.

Main Bibliography

Learn OpenGL, Joey de Vries, https://learnopengl.com/book/learnopengl_book.pdf, CC BY-NC 4.0, 2020.

Computer Graphics, D. Hearn e M.P. Baker, Prentice Hall Intl Eds, 1994.

Computer Graphics, Principles and Practice, Foley et al., Addison-Wesley, 1993.

3D Computer Graphics, A. Watt, Addison-Wesley, 2nd Ed. 1993.

Advanced Animation and Rendering Techniques, Watt and Watt, ACM Press, 1992.