

			English version at the end of	this document
Ano Letivo	2016-17			
Unidade Curricular	ANÁLISE COMPLEXA	A		
Cursos	ENGENHARIA ELETI	RÓNICA E TELECOMU	NICAÇÕES (Mestrado Integrado)	
Unidade Orgânica	Faculdade de Ciência	s e Tecnologia		
Código da Unidade Curricula	ar 14811089			
Área Científica	MATEMÁTICA			
Sigla				
Línguas de Aprendizagem	Português			
Modalidade de ensino	Presencial			
Docente Responsável	Nenad Manojlovic			
DOCENTE	TIPO DE AULA	TURMAS	TOTAL HORAS DE CONTACTO (*)	
Nenad Manojlovic	OT	OTREPETENT		15OT

^{*} Para turmas lecionadas conjuntamente, apenas é contabilizada a carga horária de uma delas.

ANO	PERÍODO DE FUNCIONAMENTO*	HORAS DE CONTACTO	HORAS TOTAIS DE TRABALHO	ECTS
2º	S1	30T; 45TP	168	6

^{*} A-Anual;S-Semestral;Q-Quadrimestral;T-Trimestral

Precedências

Sem precedências

Conhecimentos Prévios recomendados

Anáçlise Real.

Objetivos de aprendizagem (conhecimentos, aptidões e competências)

Os alunos devem aprender os conceitos básicos da Análise Complexa tais como condições de Cauchy-Riemann, teorema de Cauchy, séries de Taylor e de Laurent, e transformações conformes. Devem também conhecer os conceitos básicos de Análise de Fourier e ser capazes de utilizar as transformadas de Laplace e Z na resolução de equações diferenciais e de diferenças.

Conteúdos programáticos

- 1. O plano complexo: Introdução; Estrutura algébrica; Estrutura geométrica; Estrutura topológica.
- 2. Funções complexas: Introdução; Funções elementares; Limites e continuidade.
- 3. Derivadas de funções complexas: Diferenciabilidade e derivadas; Equações de Cauchy-Riemann; Transformações conformes.
- 4. Integrais de funções complexas: Integrais sobre caminhos; Primitivas de funções complexas; Teorema de Cauchy local.
- 5. Sucessões e séries complexas: Sucessões e séries de números complexos; Convergência uniforme; Séries de potências.
- 6. Funções analíticas complexas: Teorema de Taylor; Fórmula integral de Cauchy para derivadas; Teorema de Liouville; Os zeros das funções analíticas; Princípio do módulo máximo.
- 7. Singularidades, funções meromorfas e teorema dos resíduos: Singularidades e séries de Laurent; Funções meromorfas e teorema dos resíduos; Contagem de zeros e pólos.
- 8. Aplicações: Séries de Fourier; Transformada de Fourier; Transformada de Laplace; Transformada-z; Aplicações.

Metodologias de ensino (avaliação incluída)

Aulas Teóricas: Exposição teórica dos conteúdos, baseada nos slides preparados em LaTex, é acompanhada com exemplos ilustrativos.

Aulas Teórico - Práticas: São estudados aspectos técnicos através de resolução de problemas e exercícios que ilustram explicitamente os conteúdos teóricos. As aulas são baseadas nas folhas de exercícios distribuídos aos alunos. Aos alunos é exigido um elevado nível na resolução dos problemas.

Avaliação:

Realizam-se dois testes durante o semestre e um exame final. Cada teste tem uma ponderação de 15% na nota final. Assim, a nota final é dada pela fórmula

nota final = (nota t.1.) x 15% + (nota t.2.) x 15% + (nota exame) x 70%

Bibliografia principal

- 1. L. Barreira, Análise Complexa e Equações Diferenciais, IST Press, 2009.
- 2. G. Smirnov, Análise Complexa e Aplicações, Escolar Editora, 2003.
- 3. Luis T. Magalhães, Análise Complexa de Funções de uma Variável e Aplicações, IST Press, 2004.
- 4. N. B. Providência, Análise Complexa, Gradiva 2009.

Academic Year	2016-17				
Course unit	COMPLEX ANALYSIS				
Courses	ELECTRONIC ENGINEERING AND TELECOMMUNICATIONS (Integrated Master¿s)				
Faculty / School	Faculdade de C	Ciências e Tecno	logia		
Main Scientific Area	MATEMÁTICA				
Acronym					
Language of instruction	Portuguese				
Learning modality	Presential				
Coordinating teacher	Nenad Manojlo	vic			
Teaching staff		Туре	Classes	Hours (*)	
Nenad Manoilovic		ОТ	OTREPETENT	15OT	

^{*} For classes taught jointly, it is only accounted the workload of one.

Contact hours

Т	TP	PL	TC	S	E	ОТ	0	Total
30	45	0	0	0	0	0	0	168

T - Theoretical; TP - Theoretical and practical; PL - Practical and laboratorial; TC - Field Work; S - Seminar; E - Training; OT - Tutorial; O - Other

Pre-requisites

no pre-requisites

Prior knowledge and skills

Real Analysis

The students intended learning outcomes (knowledge, skills and competences)

Students should learn the basics of Complex Analysis such as Cauchy-Riemann conditions, Cauchy theorem, Taylor and Laurent series, and conformal mapping. They should also know the basics of Fourier analysis and be able to use the Laplace transforms and Z in solving differential equations and differences.

Syllabus

- 1. The complex plane: Introduction; algebraic structure; geometric structure; topological structure.
- 2. Complex functions: introduction; elementary functions; limits and continuity.
- 3. Derivatives of complex functions: differentiability and derivatives; Cauchy-Riemann equations; conformal mappings.
- 4. Integrals of complex functions: integrals over paths; complex integration; local Cauchy theorem.
- 5. Sequences and complex series: Sequences and series of complex numbers; uniform convergence; power series.
- 6. Complex analytic functions: Taylor's theorem; Cauchy integral formula for derivatives; Liouville theorem; zeros of analytic functions; maximum module principle.
- 7. Singularities, meromorphic functions and theorem of residues: singularities and Laurent series; meromorphic functions and residue theorem; zeros and poles.
- 8. Applications: Fourier series; Fourier transform; Laplace transform; Z-transform; Applications.

Teaching methodologies (including evaluation)

Lectures: Lectures content, based on the slides prepared in LaTeX, is accompanied with illustrative examples.

Problem sessions: technical aspects are studied through problem solving and exercises that explicitly illustrate the theoretical contents. The classes are based on exercise sheets distributed to students. Students are required a high level in the resolution of problems.

Evaluation:

Two tests are held during the semester and there is final exam. Each test has a weighting of 15%. Thus, the final grade is given by

final grade = (grade t.1.) x 15% + (grade t.2.) x 15% + (exam grade) x 70%

Main Bibliography

- 1. L. Barreira, Análise Complexa e Equações Diferenciais, IST Press, 2009.
- 2. G. Smirnov, Análise Complexa e Aplicações, Escolar Editora, 2003.
- 3. Luis T. Magalhães, Análise Complexa de Funções de uma Variável e Aplicações, IST Press, 2004.
- 4. N. B. Providência, Análise Complexa, Gradiva 2009.