

			English version at the end of this document			
Ano Letivo	2019-20					
Unidade Curricular	BIOQUÍMICA FÍSICA					
Cursos	BIOQUÍMICA (1.º ciclo)					
Unidade Orgânica	Faculdade de Ciências e	Tecnologia				
Código da Unidade Curricular	14921078					
Área Científica	BIOQUÍMICA					
Sigla						
Línguas de Aprendizagem	Português					
Modalidade de ensino	Presencial					
Docente Responsável	Jorge Manuel Martins					
DOCENTE	TIPO DE AULA	TURMAS	TOTAL HORAS DE CONTACTO (*)			
Jorge Manuel Martins	OT; T; TP	T1; TP1; OT1	30T; 22,5TP; 5OT			

^{*} Para turmas lecionadas conjuntamente, apenas é contabilizada a carga horária de uma delas.

ANO	PERÍODO DE FUNCIONAMENTO*	HORAS DE CONTACTO	HORAS TOTAIS DE TRABALHO	ECTS
2°	S1	30T; 22,5TP; 5OT	168	6

^{*} A-Anual;S-Semestral;Q-Quadrimestral;T-Trimestral

Precedências

Sem precedências

Conhecimentos Prévios recomendados

Biologia Celular, Bioquímica I, Introdução à Química-Física

Objetivos de aprendizagem (conhecimentos, aptidões e competências)

Compreensão e domínio das bases físicas das técnicas de espectroscopia biológica tidas como métodos de estudo e respectivas capacidades de aplicação e racionalização de variadas aplicações em sistemas biológicos.

Conteúdos programáticos

- 1) Espectroscopia Biológica
- 2) Espectroscopia de Absorção UV/Vis
- 3) Espectroscopias de Actividade Óptica
- 4) Espectroscopias de emissão: Fluorescência e Fosforescência
- 5) Introdução à Espectroscopia de Ressonância Magnética Nuclear (NMR)

Demonstração da coerência dos conteúdos programáticos com os objetivos de aprendizagem da unidade curricular

Os conteúdos programáticos da disciplina estão em linha com disciplinas análogas lecionadas em universidades portuguesas e estrangeiras. A disciplina pretende atingir uma promoção de capacidades de abordagem e compreensão de aspectos estruturais e dinâmicos de sistemas biológicos (biomoléculas, biopolímeros, estruturas anfifílicas, estruturas supramolecurares), de modo quantitativo.

Metodologias de ensino (avaliação incluída)

Nas aulas teóricas são utilizados métodos expositivo, interrogativo e de promoção de avaliações críticas dos diversos aspectos leccionados. As aulas teórico-práticas são destinadas à consolidação dos conceitos introduzidos nas aulas teóricas, recorrendo às seguintes estratégias: resolução de problemas tipo; clarificação de conceitos e dúvidas; discussão de artigos científicos temáticos no âmbito da disciplina. Para a avaliação de conhecimentos, terão lugar dois momentos de avaliação escrita, realizados durante o semestre letivo. A nota final será a média ponderada das classificações dos testes de avaliação. Ao exame final de época normal, serão admitidos os alunos que não tenham obtido aproveitamento no regime de avaliação contínua. Ao exame de época de recurso, serão admitidos os alunos que não tenham obtido aproveitamento em avaliação contínua e/ou no exame de época normal. A classificação final será a classificação do exame, em cada uma de ambas as épocas de exame.

Demonstração da coerência das metodologias de ensino com os objetivos de aprendizagem da unidade curricular

Os estudantes têm normalmente aprovação na disciplina, atingindo níveis em linha com as classificações médias das restantes disciplinas do curso.

Bibliografia principal

- P. W. Atkins; J. de Paula, Physical Chemistry for the Life Sciences, 2 nd Ed., W. H. Freeman and Company, 2011.
- D. Scheehan, Physical Biochemistry: Principles and Applications, 2 nd Ed., John Wiley & Sons, New York, 2009.
- K. E. van Holde, W. C. Johnson, P. S. Ho, Principles of Physical Biochemistry, 2 nd Ed., Prentice-Hall Inc., USA, 2006.
- P. J. Walla, Modern Biophysical Chemistry, 2 nd Ed., Wiley-VCH, 2014.

Academic Year	2019-20					
Course unit	PHYSICAL BIOCHEMISTRY					
Courses	BIOCHEMISTRY (1st Cycle)					
Faculty / School	FACULTY OF SCIENCES AND TECHNOLOGY					
Main Scientific Area	BIOQUÍMICA					
Acronym						
Language of instruction	Portuguese					
Teaching/Learning modality	Promotion of self-learning study based on the transmition of konwledge in theoretical and theoretical-practical classes.					
Coordinating teacher	Jorge Manue	l Martins				
Teaching staff		Туре	Classes	Hours (*)		
Jorge Manuel Martins		OT; T; TP	T1; TP1; OT1	30T; 22,5TP; 5OT		

^{*} For classes taught jointly, it is only accounted the workload of one.

Contact hours

Т	TP	PL	TC	S	E	ОТ	0	Total
1311	22,5	0	0	0	0	5	0	168

T - Theoretical; TP - Theoretical and practical; PL - Practical and laboratorial; TC - Field Work; S - Seminar; E - Training; OT - Tutorial; O - Other

Pre-requisites

no pre-requisites

Prior knowledge and skills

Cell Biology, General Biochemistry, Introduction to Physical Chemistry

The students intended learning outcomes (knowledge, skills and competences)

Understanding and consistent handling of the physical and chemical basis underlying the study of cell and model membranes, as well as the diverse applied studies in biological systems.

Syllabus

- 1) Biological Spectroscopy
- 2) UV/Vis Absorption Spectroscopy
- 3) Optical Activity Spectroscopies
- 4) Emission Spectroscopies: Fluorescence and Phosphorescence
- 5) Introduction to NMR

Demonstration of the syllabus coherence with the curricular unit's learning objectives

The course contents are alike to other courses lectured in Portuguese universities and abroad. This course intends to uphold capacities in handling and comprehending structural and dynamical aspects of biological systems (biomolecules, biopolymers, amphiphilic structures, supramolacular structures), relying upon a quantitative basis approach.

Teaching methodologies (including evaluation)

In the theoretical classes, expositive and questioning methodologies will be used to promote critical evaluations of the diverse aspects teached. The theoretical/practical classes are devoted to consolidate the concepts teached in the theoretical classes, using the following strategies: resolution of typical problems; clarification of concepts and doubts raised by the students; discussion of general thematic related to the course. The evaluation is based either in two tests realized during the semester (the final grade is the averaged classifications) or in the final exams. The exams have two dates: standard and recurring (the final grade is the classification in the exam).

Demonstration of the coherence between the teaching methodologies and the learning outcomes

The students enrolled in this discipline have normally success, attaining grades in line with the average grades obtained in other disciplines of the course.

Main Bibliography

- P. W. Atkins; J. de Paula, Physical Chemistry for the Life Sciences, 2 nd Ed., W. H. Freeman and Company, 2011.
- D. Scheehan, Physical Biochemistry: Principles and Applications, 2 nd Ed., John Wiley & Sons, New York, 2009.
- K. E. van Holde, W. C. Johnson, P. S. Ho, Principles of Physical Biochemistry, 2 nd Ed., Prentice-Hall Inc., USA, 2006.
- P. J. Walla, Modern Biophysical Chemistry, 2 nd Ed., Wiley-VCH, 2014.