

	English version at the end of this document
Ano Letivo	2020-21
Unidade Curricular	GEODESIA POR SATÉLITE
Cursos	GEOMÁTICA (2.º Ciclo) RAMO SISTEMAS DE INFORMAÇÃO GEOGRÁFICA RAMO ANÁLISE DE SISTEMAS AMBIENTAIS SISTEMAS DE INFORMAÇÃO GEOGRÁFICA (*)
	(*) Curso onde a unidade curricular é opcional
Unidade Orgânica	Faculdade de Ciências e Tecnologia
Código da Unidade Curricular	14981061
Área Científica	CIÊNCIAS DO AMBIENTE
Sigla	
Línguas de Aprendizagem	Português.
Modalidade de ensino	Presencial e/ou à distância.
Docente Responsável	Gonçalo Nuno Delgado Prates

DOCENTE TIPO DE AULA	TURMAS	TOTAL HORAS DE CONTACTO (*)
----------------------	--------	-----------------------------

^{*} Para turmas lecionadas conjuntamente, apenas é contabilizada a carga horária de uma delas.

ANO	PERÍODO DE FUNCIONAMENTO*	HORAS DE CONTACTO	HORAS TOTAIS DE TRABALHO	ECTS
1º	S1	22.5T; 30PL; 5OT	168	6

^{*} A-Anual;S-Semestral;Q-Quadrimestral;T-Trimestral

Precedências

Sem precedências

Conhecimentos Prévios recomendados

Não aplicável.

Objetivos de aprendizagem (conhecimentos, aptidões e competências)

Pretende-se desenvolver conhecimentos relativos às superfícies e sistemas de referência da Terra e aos sistemas de observação geodésica de posicionamento por satélites, de altimetria por satélite e de gravimetria por satélite, e aptidões e competências para relacionar sistemas de referência, adquirir posicionamento com base em constelações de satélites e gerar modelos digitais altimétricos por satélite, sempre que oportuno enquadrados por casos de estudo relativos a riscos naturais e ambientais.

Conteúdos programáticos

Sistemas de referência e referenciais geodésicos. Forma e dimensão da Terra: geoide e elipsoide. Relação geodésica entre sistemas de referência e de coordenadas. Sistemas de posicionamento por satélites GNSS (Global Navigation Satellite Systems). Princípios de medição por GNSS. Redes permanentes de observação GNSS. Análise de séries temporais. Observação da tectónica e de vulcanismo. Estudo de efeitos de carga diurna, sazonal e de longo período. Estudo da atmosfera. Sistemas de altimetria RaDAR (Radio Detection and Ranging) por satélite. Princípios da medição RaDAR. Refletividade e atenuação atmosférica. Estudo do nível médio oceânico, da ondulação do geoide e de estimação batimétrica. Dinâmica das camadas geladas e aquecimento global. Integração com sistemas de gravimetria por satélite. Princípios de medição por RaDAR de Abertura Sintética (SAR). Interferometria SAR. Geração de modelos digitais altimétricos. Observação da tectónica e de vulcanismo.

Metodologias de ensino (avaliação incluída)

A unidade curricular tem 1.5 hora teórica e 2.0 horas teórico-práticas por semana, e 1.0 hora de orientação tutorial por cada 3 semanas. As aulas teóricas recorrem ao método expositivo para transmissão de conhecimentos teóricos com projeção de slides e/ou ao estudo pelos alunos de elementos de apoio sugeridos. Nas aulas teórico-práticas pretende-se realizar trabalho de campo para adquirir posicionamento com base em constelações de satélites, e analisar e processar observáveis resultantes dos sistemas geodésicos estudados em sistemas computacionais disponibilizados e/ou próprios. As aulas tutoriais destinam-se ao esclarecimento de dúvidas e apoio à realização de trabalhos. A classificação final é determinada por relatório referente à discussão de questões em forum online e à resolução de dois problemas práticos, com classificação não inferior a 8 valores e pesos iguais a 20%, 40% e 40% da nota final cada, respetivamente. A aprovação requer nota final superior ou igual a 9.5 valores.

Bibliografia principal

Ferretti, A., A. Monti-Guarnieri, C. Prati, F. Rocca, D. Massonnet (2007) InSAR Principles: Guidelines for SAR Interferometry Processing and Interpretation. European Space Agency.

Fu, L., A. Cazenave (2001) Satellite Altimetry and Earth Sciences: A Handbook of Techniques and Aplications. Academic Press.

Hofmann-Wellenhof, B., H. Lichtenegger, E. Wasle (2008) GNSS - Global Navigation Satellite Systems: GPS, GLONASS, Galileo, and more. Springer-Verlag.

Seeber, G. (2003) Satellite Geodesy. Walter de Gruyter.

Smith, J. (1998) Introduction to Geodesy: The History and Concepts of Modern Geodesy. John Wiley & Sons, Inc.

Academic Year	2020-21						
Course unit	SATELLITE GEODESY						
Courses	GEOMATICS BRANCH SPECIALIZATION GEOGRAPHIC INFORMATION SYSTEMS BRANCH SPECIALIZATION ENVIRONMENTAL SYSTEMS ANALYSIS (*)						
	(*) Optional course unit for this course						
Faculty / School	FACULTY OF SCIENCES AND TECHNOLOGY						
Main Scientific Area							
Acronym							
Language of instruction	Portuguese.						
Teaching/Learning modality	Presential and/or at a distance.						
Coordinating teacher	Gonçalo Nuno Delgado Prates						
Teaching staff		Туре	Classes	Hours (*)			

^{*} For classes taught jointly, it is only accounted the workload of one.

C-		h	
υo	ntact	not	มเร

Т	TP	PL	TC	S	E	ОТ	0	Total
22.5	0	30	0	0	0	5	0	168

T - Theoretical; TP - Theoretical and practical; PL - Practical and laboratorial; TC - Field Work; S - Seminar; E - Training; OT - Tutorial; O - Other

Pre-requisites

no pre-requisites

Prior knowledge and skills

Not applicable.

The students intended learning outcomes (knowledge, skills and competences)

It is intended to develop knowledge about the Earth's reference surfaces and systems, and geodetic observation systems for positioning by satellite, altimetry by satellite and gravimetry by satellite, and aptitudes and competencies to convert between reference systems, to acquire positioning based on constellations of satellites and generate digital elevation models from satellite, whenever appropriate framed by case studies related to natural and environmental hazards.

Syllabus

Geodetic reference systems and reference frames. Shape and size of the Earth: ellipsoid and geoid. Geodesic relationship between reference systems and coordinates. Positioning systems by GNSS (Global Navigation Satellite Systems) satellites. GNSS measurement principles. Permanent networks of GNSS observation. Time series analysis. Studies of tectonics and volcanism. Studies of diurnal, seasonal and long period load effects. Studies of the atmosphere. RaDAR (Radio Detection and Ranging) satellite altimetry systems. RaDAR measurement principles. Reflectivity and atmospheric attenuation. Studies about the mean sea level, the geoid undulation and bathymetric estimation. Studies of ice sheets dynamics and global warming. Combined application of satellite gravimetry systems. Synthetic aperture RADAR (SAR) measurement principles. SAR interferometry. Studies of tectonics and volcanism.

Teaching methodologies (including evaluation)

The curricular-unit has 1.5 hours of theoretical and 2.0 hours of theoretical-practical classes per week, and 1.0 hour of tutorial orientation every 3 weeks. The theoretical classes use the expositive method for transmitting theoretical knowledge with slide projector and/or the study by students of suggested support elements. In theoretical-practical classes we intend to conduct field work to acquire positioning based on satellite constellations, and analyze and process observable resulting from the studied geodetic systems in available and / or own computer systems. The tutorials are intended to clarify and support the practical works development. The final grade is determined by report on the discussion of questions in online forum and the resolution of two practical problems, with a rating of not less than 8 values and weights equal to 20%, 40% and 40% of the final grade each, respectively. Approval requires a final grade greater than or equal to 9.5 points.

Main Bibliography

Ferretti, A., A. Monti-Guarnieri, C. Prati, F. Rocca, D. Massonnet (2007) InSAR Principles: Guidelines for SAR Interferometry Processing and Interpretation. European Space Agency.

Fu, L., A. Cazenave (2001) Satellite Altimetry and Earth Sciences: A Handbook of Techniques and Aplications. Academic Press.

Hofmann-Wellenhof, B., H. Lichtenegger, E. Wasle (2008) GNSS - Global Navigation Satellite Systems: GPS, GLONASS, Galileo, and more. Springer-Verlag.

Seeber, G. (2003) Satellite Geodesy. Walter de Gruyter.

Smith, J. (1998) Introduction to Geodesy: The History and Concepts of Modern Geodesy. John Wiley & Sons, Inc.