

	English version at the end of this document
Ano Letivo	2018-19
Unidade Curricular	DIGITALIZAÇÃO E MONITORIZAÇÃO GEOMÉTRICA 3D
Cursos	GEOMÁTICA (2.º Ciclo) (*) SISTEMAS DE INFORMAÇÃO GEOGRÁFICA
	(*) Curso onde a unidade curricular é opcional
Unidade Orgânica	Faculdade de Ciências e Tecnologia
Código da Unidade Curricular	14981073
Área Científica	TECNOLOGIA
Sigla	
Línguas de Aprendizagem	Português.
Modalidade de ensino	À distância e presencial (b-learning).
Docente Responsável	Gonçalo Nuno Delgado Prates

DOCENTE	TIPO DE AULA	TURMAS	TOTAL HORAS DE CONTACTO (*)	
Gonçalo Nuno Delgado Prates	OT; T; TP	T1; TP1; OT1	22.5T; 30TP; 5OT	

^{*} Para turmas lecionadas conjuntamente, apenas é contabilizada a carga horária de uma delas.

ANO	PERÍODO DE FUNCIONAMENTO*	HORAS DE CONTACTO	HORAS TOTAIS DE TRABALHO	ECTS
2º	S1	22.5T; 30TP; 5OT	168	6

^{*} A-Anual;S-Semestral;Q-Quadrimestral;T-Trimestral

Precedências

Sem precedências

Conhecimentos Prévios recomendados

Não aplicável.

Objetivos de aprendizagem (conhecimentos, aptidões e competências)

Pretende-se desenvolver conhecimentos e competências em métodos de deteção de deformação geométrica através de informação 3D massiva, ou nuvem de pontos, por métodos baseados em laser-scanner terrestre e em fotografias digitais terrestre, e da observação de redes de marcas de controlo com ajuste estocástico de observáveis e avaliação estatística de séries temporais de coordenadas em referenciais apropriados, e aptidão para aplicação ao estudo de dinâmica geomorfológica e estrutural.

Conteúdos programáticos

Informação 3D massiva. Laser-scanner terrestre. Azimute, inclinação e distância. Metodologias de co-registro de nuvens de pontos. Fotogrametria digital terrestre. Propriedades da projeção central. Visão estereoscópica. Ângulo paralático e pontos homólogos. Equações de colinearidade. Malha poligonal (mesh) e modelação 3D. Conceito de deformação geométrica através de variação das coordenadas. Métodos geodésicos. Observáveis, modelo funcional e modelo estocástico. Propagação de variâncias e covariâncias. Método dos mínimos-quadrados. Inferência de deslocamento por avaliação estatística. Elipses de erro e elipses de confiança. Análise de séries temporais. Método de estado-espaço.

Metodologias de ensino (avaliação incluída)

A unidade curricular tem 1.5 hora teórica e 2.0 horas teórico-práticas por semana, e 1.0 hora de orientação tutorial por cada 3 semanas. As aulas teóricas recorrem ao método expositivo para transmissão de conhecimentos teóricos com projeção de slides e/ou ao estudo pelos alunos de elementos de apoio sugeridos. Nas aulas teórico-práticas pretende-se processar informação fotográfica e 3D massiva, e executar métodos de ajuste de observáveis geodésicas, através de uma linguagem de programação, em sistemas computacionais disponibilizados e/ou próprios. As aulas tutoriais destinam-se ao esclarecimento de dúvidas e apoio à realização de trabalhos. A classificação final é determinada por relatório referente à resolução de 3 problemas práticos desenvolvidos em sala de aula, com classificação não inferior a 8 valores e pesos respetivamente 40%, 30% e 30% da nota final. A aprovação requer nota final superior ou igual a 9.5 valores.

Bibliografia principal

Cooper, M. (1987) Control Surveys in Civil Engineering. Nichols Publishing Company.

Kay, S.M. (1993) Fundamentals of Statistical Signal Processing: Estimation Theory. Prentice-Hall PTR.

Schofield, W., Breach M. (2007) Engineering Surveying. Elsevier Ltd.

Wolf, P.R. (1983) Elements of Fotogrammetry, McGraw-Hill.

Wang C.C. (2011) Laser Scanning, Theory and Applications. InTech.

Academic Year	2018-19						
Course unit	DIGITALIZAÇÃO E MOI	NITORIZAÇÃO GE	OMÉTRICA 3D				
Courses	GEOMATICS (*) SISTEMAS DE INFO	DRMAÇÃO GEOGF	RÁFICA				
	(*) Optional course unit f	(*) Optional course unit for this course					
Faculty / School	Faculdade de Ciências e	e Tecnologia					
Main Scientific Area	TECNOLOGIA						
Acronym							
Language of instruction	Portuguese.						
Teaching/Learning modality	At distance and presential (b-learning).						
Coordinating teacher	Gonçalo Nuno Delgado	Prates					
Teaching staff		Туре	Classes	Hours (*)			
Gonçalo Nuno Delgado Prates		OT; T; TP	T1; TP1; OT1	İ	22.5T; 30TP; 5OT		

^{*} For classes taught jointly, it is only accounted the workload of one.

|--|

Т	TP	PL	TC	S	E	ОТ	0	Total
22.5	30	0	0	0	0	5	0	168

T - Theoretical; TP - Theoretical and practical; PL - Practical and laboratorial; TC - Field Work; S - Seminar; E - Training; OT - Tutorial; O - Other

Pre-requisites

no pre-requisites

Prior knowledge and skills

Not applicable.

The students intended learning outcomes (knowledge, skills and competences)

It is intended to develop knowledge and competencies in geometrical deformation detection methods through massive 3D information, or point cloud, with methods based on terrestrial laser-scanner and terrestrial digital photos, and observation of networks of control benchmarks, through stochastic observable adjustment and statistical evaluation of coordinates? time series in appropriate reference frames, and aptitude for the application to the study of geomorphological and structural dynamics.

Syllabus

Massive 3D information. Terrestrial laser-scanner. Azimuth, inclination and distance. Methodologies for co-registration of point clouds. Digital terrestrial photogrammetry. Properties of the central projection. Stereoscopic vision. Parallax angle and homolog points. Collinearity equations. Polygonal mesh and 3D modeling. Concept of geometric deformation by variation of coordinates. Geodetic methods. Observable, functional model and stochastic model. Propagation of variances and co-variances. The least-squares method. Inference of displacement by statistical evaluation. Error and confidence ellipses. Time series analysis. The state-space method.

Teaching methodologies (including evaluation)

The curricular-unit has 1.5 hours of theoretical and 2.0 hours of theoretical-practical classes per week, and 1.0 hour of tutorial orientation every 3 weeks. The theoretical classes use the expositive method for transmitting theoretical knowledge with slide projector and/or the study by students of suggested support elements. In theoretical-practical classes we intend to process photographic and 3D massive information, execute geodetic observable adjustment methods through a programming language in available and / or own computer systems. The tutorials are intended to clarify and support the practical works development. The final grade is determined by report on the resolution of 3 practical problems developed in the classroom, with grades not less than 8 points and weights respectively 40%, 30% and 30% of the final grade. The approval requires final grade greater than or equal to 9.5 points.

Main Bibliography

Cooper, M. (1987) Control Surveys in Civil Engineering. Nichols Publishing Company.

Kay, S.M. (1993) Fundamentals of Statistical Signal Processing: Estimation Theory. Prentice-Hall PTR.

Schofield, W., Breach M. (2007) Engineering Surveying. Elsevier Ltd.

Wolf, P.R. (1983) Elements of Fotogrammetry, McGraw-Hill.

Wang C.C. (2011) Laser Scanning, Theory and Applications. InTech.