

	English version at the end of this document
Ano Letivo	2018-19
Unidade Curricular	INTRODUÇÃO ÀS ENERGIAS RENOVÁVEIS
Cursos	ENGENHARIA DO AMBIENTE (Mestrado Integrado)
Unidade Orgânica	Faculdade de Ciências e Tecnologia
Código da Unidade Curricular	15341138
Área Científica	TECNOLOGIA
Sigla	
Línguas de Aprendizagem	Português
Modalidade de ensino	Presencial
Docente Responsável	Eusébio Zeferino Encarnação da Conceição

	•		
DOCENTE	TIPO DE AULA	TURMAS	TOTAL HORAS DE CONTACTO (*)

^{*} Para turmas lecionadas conjuntamente, apenas é contabilizada a carga horária de uma delas.

ANO	PERÍODO DE FUNCIONAMENTO*	HORAS DE CONTACTO	HORAS TOTAIS DE TRABALHO	ECTS
40	S1	22.5T; 20TP; 10S	168	6

^{*} A-Anual;S-Semestral;Q-Quadrimestral;T-Trimestral

Precedências

Sem precedências

Conhecimentos Prévios recomendados

Fenómenos de Transferência

Objetivos de aprendizagem (conhecimentos, aptidões e competências)

Os objectivos principais da disciplina de Introdução às Energias Renováveis consistem no desenvolvimento de tópicos relacionados com a Energia Solar, Biomassa, Energia Eólica, Energia Hídrica, Geotérmica, Energia das Ondas, Edifícios, Cogeração, Trigeração, Hidrogénio e Outras energias.

Conteúdos programáticos

1. Energia Solar

- 1.1. Energia solar térmica passiva:
- 1.2. Energia solar térmica activa:
- 1.3. Energia solar fotovoltaica:

2. Biomassa

- 2.1. Biomassa sólida Queima directa:
- 2.2. Biocombustíveis liquidos:
- 2.3. Biocombustíveis gasosos ? Biogás:

3. Energia Eólica

3.1. Características do vento:
3.2. Caracterização dos locais:
3.3 Moinhos de Vento, aeromotores e aerogeradores
3.4. <u>Aerogeradores:</u>
4. Energia Hídrica.
4.1. Mecânica dos fluidos;
4.2. <u>Tipo de Turbina:</u>
4.3. <u>Geradores:</u>
4.4. Potência nominal de centrais hídricas;
4.5. Energia produzida em centrais hídricas:
4.6. Centrais hídricas com baixa, média e alta queda de água;
4.7. Centrais hídricas com pequena, mini e micro potência:
4.8. Centrais hídricas com grande, médio e pequeno caudal;
4.9. Aproveitamento de fio de água, de albufeira e com bombagem;
5. Geotérmica.
6. Energia das Ondas
7. Edificação
8. Cogeração
9. Trigeração.
10. Hidrogénio.

Metodologias de ensino (avaliação incluída)

A avaliação é efectuada a partir de um exame e de um trabalho prático. A classificação final, CF, é dada por:

CF =0.7 CE + 0.3 CTP (arredondada às unidades),

em que:

CTP - classificação do trabalho prático,

CE - classificação do exame,

A aprovação verifica-se quando:

- trabalho prático (com a validade máxima de 1 Ano) tenha apreciação favorável,
- nota mínima de 10 valores no exame (CE),
- presença obrigatória em pelo menos ¾ das aulas práticas,
- · CF maior ou igual 10 valores.

Bibliografia principal

Collares-Pereira, C. (1998), Energias Renováveis, a Opção Inadiável, Sociedade Portuguesa de Energia Solar.

Conceição, E. Z. E. (2000), Introdução aos Fenómenos de Transferência de Calor e Massa, Apontamentos das Disciplinas de Fenómenos de Transferência, Unidade de Ciências Exactas e Humanas da Universidade do Algarve, Janeiro de 2000.

Gonçalves, H. e Graça, J. M. (2004), Conceitos Bioclimáticos para os Edifícios em Portugal, DGGE / IP-3E.

Gonçalves, H; Cabrito, P.; Oliveira, M. e Patrício, A. (1997), Edifícios Solares Passivos em Portugal, Sociedade Portuguesa de Energia Solar.

Iqbal, M. (1983), An Introduction to Solar Radiation. Academic Press. Canada.

Karl e Imhoff, K. R. (1996), Manual de Tratamento de águas Residuais, Editora Edgar Blucher LTDA.

Metcalf e Eddy (1991), Wastewater Engeneering ? Treatment Disposal Resure, Terceira Edição, McGraw-Hill.

Teodósio, A. L. R. (2006), Introdução às Energias Alternativas, FCMA, Universidade do Algarve.

Academic Year	2018-19						
Course unit	INTRODUCTION TO RENEWABLE ENERGY						
Courses	ENVIRONMENTAL ENGINEERING (Integrated Masters)						
Faculty / School	Faculdade de Cié	Faculdade de Ciências e Tecnologia					
Main Scientific Area	TECNOLOGIA						
Acronym							
Language of instruction	Portuguese						
Teaching/Learning modality	Presential						
Coordinating teacher	Eusébio Zeferino Encarnação da Conceição						
Teaching staff		Туре	Classes	Hours (*)			

^{*} For classes taught jointly, it is only accounted the workload of one.

Contact hours

Т	TP	PL	TC	S	E	ОТ	0	Total
22.5	20	0	0	10	0	0	0	168

T - Theoretical; TP - Theoretical and practical; PL - Practical and laboratorial; TC - Field Work; S - Seminar; E - Training; OT - Tutorial; O - Other

Pre-requisites

no pre-requisites

Prior knowledge and skills

Heat and mass transfer

The students intended learning outcomes (knowledge, skills and competences)

The main objectives of the introduction of discipline to the Renewable Energy are the development of topics related to Solar Energy, Biomass Energy Eólica, Hydropower Power, Geothermal, Wave Energy, Buildings, Cogeneration, Trigeneration, hydrogen and other energy.

Syllabus

- 1. Solar Energy
- 1.1. Passive solar energy:
- 1.2. active solar thermal energy:
- 1.3. Photovoltaic solar energy:
- 2. Biomass
- 2.1. Solid biomass direct burning;
- 2.2. Liquid Biofuels:
- 2.3. Gaseous biofuels Biogas:
- 3. Wind Energy
- 3.1. Wind characteristics;
- 3.2. Characterization of places:
- 3.3 Wind turbines and aero-engines
- 3.4. wind turbines:
- 4. Hydropower.
- 4.1. Fluid mechanics;
- 4.2. Turbine type:
- 4.3. generators;
- 4.4. Nominal power hydro plants;
- 4.5. Energy produced in hydro plants;
- 4.6. hydro plants with low, medium and high water fall;
- 4.7. hydro plants with small, mini and micro power;
- 4.8. hydro plants with large, medium and small flow;
- 4.9. Water Wire Harnessing, reservoir and pumping;
- 5. Geothermal.
- 6. Wave Energy
- 7. Buildings
- 8. Cogeneration
- 9. Trigeneration.
- 10. Hydrogen.
- 11. Other energy.

Teaching methodologies (including evaluation)

The evaluation is carried out from an exam and a practical assignment. The final classification, CF, is given by:

CF = 0.7 CE + 0.3 CTP (rounded to units)

on what:

CTP - the practical work classification,

EC - exam classification,

The approval is when:

- Practical work (with the maximum validity of 1 year) has favorable assessment,
- Minimum classification of 10 on the exam (CE),
- Must in at least 3/4 of the practical classes,
- CF greater than or equal 10.

Main Bibliography

Collares-Pereira, C. (1998), Energias Renováveis, a Opção Inadiável, Sociedade Portuguesa de Energia Solar.

Conceição, E. Z. E. (2000), Introdução aos Fenómenos de Transferência de Calor e Massa, Apontamentos das Disciplinas de Fenómenos de Transferência, Unidade de Ciências Exactas e Humanas da Universidade do Algarve, Janeiro de 2000.

Gonçalves, H. e Graça, J. M. (2004), Conceitos Bioclimáticos para os Edifícios em Portugal, DGGE / IP-3E.

Gonçalves, H; Cabrito, P.; Oliveira, M. e Patrício, A. (1997), Edifícios Solares Passivos em Portugal, Sociedade Portuguesa de Energia Solar.

Igbal, M. (1983), An Introduction to Solar Radiation. Academic Press. Canada.

Karl e Imhoff, K. R. (1996), Manual de Tratamento de águas Residuais, Editora Edgar Blucher LTDA.

Metcalf e Eddy (1991), Wastewater Engeneering ? Treatment Disposal Resure, Terceira Edição, McGraw-Hill.

Teodósio, A. L. R. (2006), Introdução às Energias Alternativas, FCMA, Universidade do Algarve.