

	English version at the end of this document
Ano Letivo	2019-20
Unidade Curricular	ÁGUA NO PROJETO DE ARQUITETURA PAISAGISTA
Cursos	ARQUITETURA PAISAGISTA (1.º ciclo)
Unidade Orgânica	Faculdade de Ciências e Tecnologia
Código da Unidade Curricular	15361110
Área Científica	ARQUITETURA PAISAGISTA
Sigla	
Línguas de Aprendizagem	Português
Modalidade de ensino	Presencial
Docente Responsável	Carla Maria Rolo Antunes

DOCENTE	TIPO DE AULA	TURMAS	TOTAL HORAS DE CONTACTO (*)
Carla Maria Rolo Antunes	T; TP	T1; TP1	7.5T; 22.5TP
Maria Paula Mendes Pinto Farrajota	T; TP	T1; TP1	7.5T; 45TP

^{*} Para turmas lecionadas conjuntamente, apenas é contabilizada a carga horária de uma delas.

ANO	PERÍODO DE FUNCIONAMENTO*	HORAS DE CONTACTO	HORAS TOTAIS DE TRABALHO	ECTS
30	S1	15T; 45TP	168	6

^{*} A-Anual; S-Semestral; Q-Quadrimestral; T-Trimestral

Precedências

Sem precedências

Conhecimentos Prévios recomendados

Conhecimentos nas áreas de pedologia, geologia, geomorfologia, vegetação, uso e ocupação do solo.

Objetivos de aprendizagem (conhecimentos, aptidões e competências)

Pretende-se que o aluno adquira os conhecimentos básicos de Hidrologia e Recursos Hídricos, no que se refere às diferentes aplicações e análise da água no projeto de arquitetura paisagista (AP).

Na 1ª parte são abordados conceitos básicos - bacia hidrográfica e ciclo hidrológico e o tema **excesso** de água (cheias). Pretende-se que o aluno seja capaz de calcular cheias, implantar um sistema de drenagem, dimensionar pequenas bacias de retenção de controlo de cheias e que projete intervenções nos sistemas fluviais no âmbito da AP, recorrendo a técnicas no domínio da bioengenharia.

Na 2ª parte são abordados os temas do *deficit* de água, ou seja, as necessidades hídricas do projeto de AP, as suas particularidades e o modo de complementar as necessidades hídricas das plantas através da rega. Pretende-se que os alunos estimem as necessidades hídricas de um espaço verde, conheçam os diferentes tipos de materiais de rega, compreendam e interpretem um projeto de rega, e a implementem a sua gestão.

Conteúdos programáticos

PARTE A:

Bacia hidrográfica: Características geométricas e do sistema de drenagem.

Ciclo hidrológico. Cheias e secas. Água: condicionante à ocupação do território.

Cheias (Tc, T, Qp - mét. racional; medidas de controlo de cheias- aplicações). Drenagem ? aplicações.

Erosão hídrica do solo (USLE ? aplicações). Produção de sedimentos e assoreamento de albufeiras. Medidas de conservação do solo e da água.

Intervenções em sistemas fluviais no domínio da AP, recorrendo a técnicas da bioengenharia.

PARTE B:

Água no solo. Solo: reservatório de água. Necessidades hídricas das plantas. Evapotranspiração potencial e cultural. Particularidades da rega dos espaços verdes. Coeficiente de paisagem. Hidrozonas. Balanço hídrico e estimativa das necessidades de rega. Tipos de sistemas de rega e critérios de seleção. Material de rega. Rega por aspersão e localizada: micro-aspersão; gota-a-gota. Tubagens, Válvulas. Filtros. Programadores. Gestão da rega. Origens e qualidade da água para rega.

Demonstração da coerência dos conteúdos programáticos com os objetivos de aprendizagem da unidade curricular

A água é essencial à vida e tem custo para os utilizadores. O conhecimento das disponibilidades hídricas do local (excesso ou falta) e financeiras do promotor do projeto condiciona as opções desde o início da sua conceção.

Os conteúdos da UC privilegiam o desenvolvimento de competências que permitem ao aluno avaliar necessidades e excesso de água, de modo a intervir na componente água ao nível do projeto de AP. A análise de estudos de caso confronta os alunos com a prática fora da academia.

A qualidade funcional e paisagística do projeto depende da capacidade de drenagem do local e da estimativa das necessidades e disponibilidades hídricas. Para atingir estes objetivos é necessário estimar afluências, dimensionar sistemas de drenagem, conhecer as necessidades hídricas das plantas, entendendo o solo como um reservatório fundamental na gestão da água. Na rega o conhecimento do material e a seleção em função das hidrozonas é fundamental para o sucesso do projeto.

Metodologias de ensino (avaliação incluída)

Modalidade de ensino: presencial, regime de avaliação contínua, com:

- exposição da matéria teórica, power-point (sala de aula com projetor)
- disponibilização aos alunos (tutória electrónica): power-point, textos de apoio, artigos
- exercícios práticos (EP) e visita de estudo.

Método de ensino: pretende promover a autonomia e a capacidade de análise e de síntese do aluno, com base em aulas T e TP (sala de aula com computadores para os alunos), em que alunos realizam exercícios de aplicação dos conhecimentos, contactam com estudos de caso e consultam e analisam projetos e materiais de rega *on-line*.

Avaliação: classificação em 2 testes (Partes A + B), ou no exame, e realização de EP.

Aprovação final: Mínimo 9,5 valores em ambas em cada parte. Peso de cada parte: 50%. Parte A: componentes teórica (70%) e prática (30%).

Admissão a exame: nota superior a 9,5 na prática Parte A (3 trabalhos:35% TP1 + 30%TP2 + 35%TP3) e frequentado 75% aulas TP.

Dispensa do exame: nota superior a 9,5 nos 2 testes.

Demonstração da coerência das metodologias de ensino com os objetivos de aprendizagem da unidade curricular

A metodologia de ensino integrada, com a aplicação dos conceitos teóricos através do desenvolvimento de trabalhos práticos, permite ao aluno refletir e adquirir as competências necessárias para atingir os objetivos da UC e aplicar, de forma autónoma, em projetos no domínio da Arquitectura paisagista

Privilegiar-se-ão as metodologias interativas, envolvendo os estudantes no processo de ensino aprendizagem, centrado na procura, na análise qualitativa e quantitativa de dados, assim como na procura de soluções técnicas. Com esta abordagem pretende-se ainda o trabalho em equipa e o iniciar de apresentação de soluções para situações reais.

Bibliografia principal

Chow Ven Te, Maidment D., Mays, L. (1988) *Applied Hydrology* . McGraw-Hill International Editions. New York. Disponível em: http://pt.scribd.com/doc/29283580/Applied-Hydrology-by-Ven-Te-Chow-David-R-maidment-Larry-W.

Lencastre, A. e Franco, F. M. (1984) Lições de Hidrologia. Universidade Nova de Lisboa. Faculdade de Ciências e Tecnologia. Lisboa.

Pizarro Cabello, Fernando. (1990) Riegos localizados de alta frecuencia (RLAF) / goteo, microaspersión, exudacíon. Ed. Mundi-pressa. Madrid. CDU 631.67

Ponce, V.M. (1989) *Engineering Hydrology. Principles and Pratices* . New Jersey. Ed. Prentice Hall. Disponível em: http://ponce.sdsu.edu/330textbook_hydrology_chapters.html

Smith, Stephen W. (1997). Landscape irrigation /design and management. John Wiley and Sons. Cota 712.2

Silva, Joana S; (2011). *Planos de gestão da rega em projectos de arquitectura paisagista. Dissertação para a obtenção do grau de mestre em Arquitectura Paisagista.* ISA . UTL. Lisboa. Disponível em: https://www.repository.utl.pt/

Academic Year	2019-20						
Course unit	WATER IN THE LANDSCAPE ARCHITECTURE PROJECT						
Courses	LANDSCAPE ARCHITECTURE (1st Cycle)						
Faculty / School	FACULTY OF SCIENCES AND TECHN	OLOGY					
Main Scientific Area	ARQUITETURA PAISAGISTA						
Acronym							
Language of instruction	Portuguese - PT						
Teaching/Learning modality	Mode of teaching: classroom, continuous evaluation system.						
Coordinating teacher	Carla Maria Rolo Antunes						
Teaching staff		Туре	Classes	Hours (*)			
Carla Maria Rolo Antunes		T; TP	T1; TP1	7.5T; 22.5TP			
Maria Davila Mandaa Dinta Far	unista.	T, TD	T1, TD1	7.5T. 45TD			

Maria Paula Mendes Pinto Farrajota
* For classes taught jointly, it is only accounted the workload of one.

7.5T; 45TP

Contact hours

Т	TP	PL	TC	S	E	ОТ	0		Total
15	45	0	0	0	0	0	0	[168

T - Theoretical; TP - Theoretical and practical; PL - Practical and laboratorial; TC - Field Work; S - Seminar; E - Training; OT - Tutorial; O - Other

Pre-requisites

no pre-requisites

Prior knowledge and skills

It is intended that the student acquire the basic knowledge of Hydrology and Water Resources, especially with regard to different applications and water analysis in the design of landscape architecture.

In the first part of this course the basics are approached? watershed, hydrological cycle and the theme of excess water (floods).

In the second part the theme of water deficit is examined.

The students intended learning outcomes (knowledge, skills and competences)

In the first part of this course the basics are approached? watershed, hydrological cycle and the theme of excess water (floods).

It?s intended that the student is able to calculate floods, implement a drainage system, small scale retention basins for flood control and is able to design interventions in river systems within the LA, using bioengineering techniques.

In the second part the theme of water deficit is examined. The water requirements of the landscape project, it?s particularities, and the way to supplement the water demands. It?s intended that the student at the end of the module is able to estimate the water needs of a landscape project, to know the different types of irrigation materials, understand and interpret an irrigation project, and implementing it?s management.

Syllabus

PART A:

- 1. Watershed: Geometrical and drainage characteristics.
- 2. Hydrologic cycle. Floods, droughts. Water: constraint to the occupation of the territory.
- 3. Floods (Tc, T, peak discharge? rational method; intervention measures in flood control applications). Drainage? applications.
- 4. Soil erosion (USLE applications). Production of sediment and siltation of reservoirs. Soil and water conservation measures.
- 5. Interventions in river systems in the area of LA using bioengineering techniques.

PART B:

6.Soil water content. Soil: reservoir. Water requirements of green areas. Potential and crop evapotranspiration. Particularities of landscape irrigation. Landscape coefficient. Hidrozones. Water balance and estimation of irrigation requirements. Different types of irrigation systems and criteria for selection. Irrigation material. Sprinkler, micro-sprinkler and drip irrigation. Pipes. Valves. Filters. Programmers. Irrigation management. Sources and water quality for irrigation.

Demonstration of the syllabus coherence with the curricular unit's learning objectives

Water is essential to life, an expensive and scarce resource. Knowledge of water origins, quantity and quality, as well as the financial resources is essential for the landscape design since the first stage. The curricular approach provides the analysis of case studies, thereby confronting students with practice outside the academic environment

The future quality and aesthetics of the landscape project depends on the correct evaluation of the water needs and availability. To achieve these objectives it is necessary to estimate affluences and sizing of drainage systems, to calculate the water needs of plants / project and to understand the soil as an important water reservoir and it?s crucial role in irrigation management. Knowledge of irrigation equipment and their selection according to the different hidrozones is critical to the success of the landscape project.

Teaching methodologies (including evaluation)

Mode of teaching: classroom, continuous evaluation system, including:

- lectures are expositive, power-point (classroom equipped with slide projector)
- available to students (electronic tutorial): power point, support texts, and articles
- practical exercises (PE) and field trip

Teaching method aims to promote students' autonomy and the capacity for analysis and synthesis based on expository Theoretical and Practical classes (classroom with computers for students), in which students undertake PE, contact with case studies, analysis of projects and irrigation materials online.

Assessment: made by frequency (2 tests - A + B), or final examination, and the PE.

Final approval: Minimum of 9.5 in both tests. Weight of each part: 50%. Part A: theoretical (70%), practice (30%).

Admission Exam: Minimum of 9.5 in practice component Part A (3 PE: 35% PE1+ 30% PE 2 + 35% PE3) and attended 75% of the Practical classes.

Dispensation from examination: grade higher than 9.5 in two tests.

Demonstration of the coherence between the teaching methodologies and the learning outcomes

The integrated methodology of teaching, with the application of theoretical concepts through the development of practical work, allows students to reflect and acquire the skills necessary to achieve the goals of this course and implement autonomously on projects in the field of landscape architecture

Emphasis will be in interactive methodologies, involving students in the teaching learning process, in qualitative and quantitative data analysis, as well as in the search for technical solutions. With this approach also aims to work as a team and start to present solutions to real situations.

Main Bibliography

Chow Ven Te, Maidment D., Mays, L. (1988) *Applied Hydrology* . McGraw-Hill International Editions. New York. Disponível em: http://pt.scribd.com/doc/29283580/Applied-Hydrology-by-Ven-Te-Chow-David-R-maidment-Larry-W.

Lencastre, A. e Franco, F. M. (1984) Lições de Hidrologia. Universidade Nova de Lisboa. Faculdade de Ciências e Tecnologia. Lisboa.

Pizarro Cabello, Fernando. (1990) Riegos localizados de alta frecuencia (RLAF) / goteo, microaspersión, exudacíon. Ed. Mundi-pressa. Madrid. CDU 631.67

Ponce, V.M. (1989) *Engineering Hydrology. Principles and Pratices* . New Jersey. Ed. Prentice Hall. Disponível em: http://ponce.sdsu.edu/330textbook_hydrology_chapters.html

Smith, Stephen W. (1997). Landscape irrigation /design and management. John Wiley and Sons. Cota 712.2

Silva, Joana S; (2011). Planos de gestão da rega em projectos de arquitectura paisagista. Dissertação para a obtenção do grau de mestre em Arquitectura Paisagista. ISA . UTL. Lisboa. Disponível em: https://www.repository.utl.pt/