

			Eng	lish version at the end of this document		
Ano Letivo	2019-20					
Unidade Curricular	QUÍMICA					
Cursos	TECNOLOGIA E SEGURANÇA ALIMENTAR (1.º ciclo)					
Unidade Orgânica	Instituto Supe	rior de Engenharia				
Código da Unidade Curricular	17201004					
Área Científica	QUÍMICA					
Sigla						
Línguas de Aprendizagem	Português, In	glês.				
Modalidade de ensino	Presencial					
Docente Responsável	Gil Vicente da	a Conceição Fraqueza				
DOCENTE		TIPO DE AULA	TURMAS	TOTAL HORAS DE CONTACTO (*)		
Gil Vicente da Conceição Fraqu	ueza	PL; T	T1; PL1; PL2	15T; 90PL		

^{*} Para turmas lecionadas conjuntamente, apenas é contabilizada a carga horária de uma delas.

ANO	PERÍODO DE FUNCIONAMENTO*	HORAS DE CONTACTO	HORAS TOTAIS DE TRABALHO	ECTS
1º	S1	15T; 45PL	140	5

^{*} A-Anual;S-Semestral;Q-Quadrimestral;T-Trimestral

Precedências

Sem precedências

Conhecimentos Prévios recomendados

Não aplicável

Objetivos de aprendizagem (conhecimentos, aptidões e competências)

Esta unidade curricular tem por objetivo a:

- A. Aquisição de conceitos fundamentais de Química Geral.
- B. Aquisição de conhecimentos na preparação de soluções de diferentes tipos e cálculos associados.
- C. Aquisição de conhecimentos sobre segurança, equipamento de uso corrente e procedimentos num laboratório de química.
- D. Compreensão da estrutura atómica.
- E. Compreensão da ligação química com base na estrutura atómica.
- F. Compreensão das propriedades das moléculas e dos iões com base na ligação química e na estrutura molecular.
- G. Compreensão das propriedades das soluções com base na estrutura molecular.
- H. Identificação e compreensão de reações químicas de oxidação, ácido-base, precipitação e complexação.
- I. Identificação dos factores que afetam o equilíbrio químico.
- J. Aquisição de conceitos base de termoquímica.
- K. Compreensão dos princípios e conceitos da cinética química.
- L. Aplicação das competências adquiridas nas sessões experimentais.

Conteúdos programáticos

- 1. Conceitos básicos em Química Geral
- 2. Átomos moléculas e iões
- 3. Reações em solução aquosa e equações químicas
- 3.1 Eletrólitos
- 3.2 Reações ácido-base

- 3.3 Reações de oxidação
- 3.4 Reações de precipitação
- 4. Estrutura atómica
- 4.1 Modelo de Bohr
- 4.2 Modelo quântico
- 4.3 Números quânticos
- 4.4 Configurações eletrónicas
- 5. Estrutura molecular
- 5.1 Ligação química
- 5.2 Estruturas de Lewis
- 5.3 Geometria molecular
- 5.4 Ligação de valência
- 5.5 Orbitais moleculares
- 6. Forças intermoleculares e propriedades físicas das soluções
- 6.1 Estado gasoso
- 6.2 Forças de van der Waals, interação eletrostática e ligação de hidrogénio
- 6.3 Tensão superficial e viscosidade
- 6.4 Equilíbrio líquido-vapor
- 6.5 Efeito da temperatura e da pressão na solubilidade
- 6.6 Propriedades coligativas
- 7. Equilíbrio químico
- 7.1 Constante de equilíbrio
- 7.2 Fatores que afetam o equilibrio
- 7.3 Equilíbrio ácido base
- 7.4 Equilíbrio de solubilidade e complexação
- 8. Termoquímica
- 9. Cinética química

Demonstração da coerência dos conteúdos programáticos com os objetivos de aprendizagem da unidade curricular

A coerência dos conteúdos programáticos (números) com os objetivos (letras) será demonstrada através da seguinte matriz de alinhamento:

A - Módulo teórico: 1 a 9

B - Módulo teórico: 1, 2 e 3

C - Módulo teórico: 1;

D - Módulo teórico: 4

E - Módulo teórico: 5

F - Módulo teórico: 5 e 6

G - Módulo teórico: 5, 6 e 7

H - Módulo teórico: 3 e 7

I - Módulo teórico: 3 e 7

J - Módulo teórico: 8

K -Módulo teórico: 9

Metodologias de ensino (avaliação incluída)

Esta unidade curricular é constituída por dois módulos, um teórico e outro prático de aulas de laboratório. A maior parte das aulas teóricas são lecionadas por exposição das diversas matérias recorrendo a apresentações em Power Point. Outras, nomeadamente envolvendo exercícios e cálculos, serão desenvolvidas no quadro. Nas aulas práticas são realizados trabalhos práticos seguindo protocolos previamente disponibilizados aos alunos.

A avaliação terá uma componente teórica, teste único a realizar no final do semestre, com ponderação de 60%. A avaliação prática consiste na execução individual de um trabalho experimental seguindo um protocolo disponibilizado aos estudantes. A ponderação da componente prática é 40 %. Os resultados da componente prática não poderão ser inferiores a 8 valores (de 0 a 20).

Demonstração da coerência das metodologias de ensino com os objetivos de aprendizagem da unidade curricular

Com esta unidade curricular pretende-se que o estudante adquira uma visão global da Química e reconheça a importância desta área do conhecimento em Ciências dos Alimentos. Pretende-se uma formação prática laboratorial sólida e quantitativa que possa constituir a base para outras unidades curriculares com componente prática, a desenvolver ao longo da licenciatura.

As metodologias de ensino estão de acordo com os objetivos. As aulas teóricas darão uma visão global da Química. As aulas práticas darão a formação laboratorial acima mencionada e permitirão a consolidação de alguns pontos desenvolvidos nas aulas teóricas. Procurou-se escolher trabalhos práticos com forte caráter quantitativo e não sobreponíveis com outros que possam vir ser desenvolvidos em unidades curriculares mais avançadas. As notas das aulas teóricas bem como os protocolos dos trabalhos práticos serão disponibilizados aos alunos na tutoria eletrónica em formato PDF.

Bibliografia principal

Chang, R. (2005) Química, 8th Ed., Mc Graw-Hill, Portugal.

Skoog, D., West, D., Holler, F., Crouch, S. (2014) Fundamentals of Analytical Chemistry, Brooks/Cole, USA.

Atkins, P. And Jones, L. (2013) Chemical Principles, 6 th Ed., McMillan Learning, USA

Pombeiro, A.J.L. (2006) Técnicas e Operações Unitárias em Química Laboratorial Edição/reimpressão 2006, Fundação Calouste Gulbenkian, Lisboa.

Academic Year	2019-20			
Course unit	CHEMISTRY			
Courses	FOOD TECHNOLOGY AND SAFETY			
Faculty / School	INSTITUTE OF ENGINEERING			
Main Scientific Area	QUÍMICA			
Acronym				
Language of instruction	Portuguese, English			
Teaching/Learning modality	Presential			
Coordinating teacher	Gil Vicente da Conceição Fraqueza			
Teaching staff		Туре	Classes	Hours (*)
Gil Vicente da Conceição Erac	2110.7.2	DI · T	T1: DI 1: DI 2	15T: 00DI

Gil Vicente da Conceição Fraqueza

* For classes taught jointly, it is only accounted the workload of one.

Contact hours

Т	TP	PL	TC	S	E	ОТ	0	Total
15	0	45	0	0	0	0	0	140

T - Theoretical; TP - Theoretical and practical; PL - Practical and laboratorial; TC - Field Work; S - Seminar; E - Training; OT - Tutorial; O - Other

Pre-requisites

no pre-requisites

Prior knowledge and skills

Not applicable

The students intended learning outcomes (knowledge, skills and competences)

The main objectives of this course are to:

- A. Acquire fundamental concepts in General Chemistry
- B. Acquire knowledge in preparation of different kind of solutions and associated calculations.
- C. Acquire knowledge about security, equipment of current use and procedures in a chemistry laboratory.
- D. Understand the atomic structure.
- E. Understand the chemical bond as related to atomic structure.
- F. Understand the properties of molecules and ions as related to chemical bond and molecular structure.
- G. Understand the properties of solutions as related to molecular structure.
- H. Identify and understand redox, acid-base, precipitation and complexation reactions.
- I. Identify the major factors that affect chemical equilibrium.
- J. Acquire basic concepts in thermochemistry.
- K. Understand the principles and concepts of chemical kinetics.
- L. Apply the acquire knowledge in the experimental laboratory classes.

Syllabus

- 1. Basic concepts in General Chemistry
- 2. Atoms molecules and ions
- 3. Reactions in aqueous solution and chemical equations
- 3.1 Electrolytes
- 3.2 Acid-base reactions
- 3.3 Redox reactions
- 3.4 Precipitation reactions
- 4. Atomic structure
- 4.1 Bohr?s model
- 4.2 Quantum model
- 4.3 Quantum numbers
- 4.4 Electronic configurations
- 5. Molecular structure
- 5.1 Chemical bond
- 5.2 Lewis structures
- 5.3 Molecular geometry
- 5.4 Valence bond
- 5.5 Molecular orbitals
- 6. Intermolecular forces and physical properties of solutions
- 6.1 Gas state
- 6.2 van der Waals interactions, electrostatic interactions and hydrogen bond.
- 6.3 Surface tension and viscosity
- 6.4 Liquid-vapor equilibrium
- 6.5 Role of temperature and pressure on solubility
- 6.6 Colligative properties
- 7. Chemical equilibrium
- 7.1 Equilibrium constant
- 7.2 Factors affecting equilibrium
- 7.3 Acid-base equilibrium
- 7.4 Solubility and complexation equilibrium
- 8. Thermochemistry
- 9. Chemical kinetics

Demonstration of the syllabus coherence with the curricular unit's learning objectives

The consistency of the syllabus (numbers) with objectives (letters) will be demonstrated true the fallowing alignment matrix:

A -Theoretical module: 1, 9

B -Theoretical module: 1, 2,3

C - Theoretical module: 1

D - Theoretical module: 4

E - Theoretical module: 5

F - Theoretical module: 5, 6

G - Theoretical module: 5, 6, 7

H - Theoretical module: 3, 7

I -Theoretical module: 3,7

J - Theoretical module: 8

K - Theoretical module: 9

Teaching methodologies (including evaluation)

This course consists of two modules, one theoretical and another practical consisting in laboratory classes. Most theoretical classes will be given using Power Point presentations. Others, namely involving calculations, will be developed in the board. Laboratory classes consist in laboratory experiments developed by students based on given laboratory handouts.

The evaluation will be based on a theoretical test at the end of semester, accounting for 60% of score. Practical evaluation consists in an individual laboratory experiment, developed by students by following a handout procedure. The practical performance accounts for 40% of the final score. The practical component needs to have a minimum score of 8 (in a 0 to 20 scale).

Demonstration of the coherence between the teaching methodologies and the learning outcomes

With this course we want students to acquire a global overview in Chemistry and recognize its importance in Food Sciences. A strong laboratory preparation is also a major goal. We intent to offer a solid quantitative laboratory preparation to students that might be the grounds to face other courses during the graduation.

The teaching methodologies are in agreement with the above goals. Theoretical classes will give a global overview of Chemistry. Practical classes will give the laboratory skills and allow to consolidate some concepts developed in the theoretical classes. We chose laboratory experiments with strong quantitative character that do not overlap with experiments that could be developed in advanced courses. Lecture notes as well as laboratory handouts will be available in electronic format (PDF).

Main Bibliography

Chang, R. (2005) Química, 8th Ed., Mc Graw-Hill, Portugal.

Skoog, D., West, D., Holler, F., Crouch, S. (2014) Fundamentals of Analytical Chemistry, Brooks/Cole, USA.

Atkins, P. And Jones, L. (2013) Chemical Principles, 6 th Ed., McMillan Learning, USA

Pombeiro, A.J.L. (2006) Técnicas e Operações Unitárias em Química Laboratorial Edição/reimpressão 2006, Fundação Calouste Gulbenkian, Lisboa.