

	English version at the end of this document
Ano Letivo	2018-19
Unidade Curricular	AQUISIÇÃO DE DADOS E MODELAÇÃO 3D
Cursos	REABILITAÇÃO - EDIFÍCIOS E ÁREAS URBANAS (*) RAMO ÁREAS URBANAS RAMO EDIFÍCIOS
	(*) Curso onde a unidade curricular é opcional
Unidade Orgânica	Instituto Superior de Engenharia
Código da Unidade Curricular	17301004
Área Científica	
Sigla	
Línguas de Aprendizagem	Português.
Modalidade de ensino	Presencial.
Docente Responsável	Gonçalo Nuno Delgado Prates

DOCENTE	TIPO DE AULA	TURMAS	TOTAL HORAS DE CONTACTO (*)
Gonçalo Nuno Delgado Prates	TP	TP1	25TP
Paulo Jorge Miguel Charneca	TP	TP1	12.5TP

^{*} Para turmas lecionadas conjuntamente, apenas é contabilizada a carga horária de uma delas.

ANO	PERÍODO DE FUNCIONAMENTO*	HORAS DE CONTACTO	HORAS TOTAIS DE TRABALHO	ECTS
1º	S1	37.5TP	168	6

^{*} A-Anual; S-Semestral; Q-Quadrimestral; T-Trimestral

Precedências

Sem precedências

Conhecimentos Prévios recomendados

Não se aplica.

Objetivos de aprendizagem (conhecimentos, aptidões e competências)

Executar e compreender métodos de aquisição de informação espacial métrica baseados em fotografias do objeto. Compreender métodos de aquisição de informação espacial métrica por varrimento laser do objeto. Modelar nuvens de pontos em ambiente BIM (Building Information Modeling). Empregar metodologias e ferramentas de aplicação em ambiente BIM para elaborar e acompanhar projetos de AEC (Arquitetura, Engenharia e Construção).

Conteúdos programáticos

Geometria da fotografia. Lente e feixe de luz. Distorções das lentes. Propriedades da projecção central. Modelo estereoscópico. Sobreposições e pontos homólogos. Equações de coliearidade. Nuvem de pontos (point-cloud). Varrimento laser. Coordenadas esféricas. Resolução espacial. Co-registo de varrimentos. Nuvem de pontos (point-cloud). Building Information Modeling. Importação de nuvem de pontos 3D. Importação de plantas 2D. Catálogo de objectos. Modelação e visualização 3D. Interoperabilidade AEC.

Metodologias de ensino (avaliação incluída)

A unidade curricular tem 2.5 horas teórico-práticas por semana. As aulas teóricas-práticas recorrem ao método expositivo para transmissão de conhecimentos teóricos com projeção de slides e/ou à execução prática de processamento informação fotográfica e 3D massiva, e modelação 3D em ambiente BIM (Building Information Modeling). A classificação final é determinada por relatório referente à resolução de 2 problemas práticos desenvolvidos em sala de aula, com classificação não inferior a 8 valores e pesos iguais a 50% da nota final. A aprovação requer nota final superior ou igual a 9.5 valores.

Bibliografia principal

Eastman, C., Teicholz, P., Sacks, R., Liston, K. (2011) BIM Handbook: A Guide to Building Information Modeling for Owners, Managers, Designers, Engineers and Contractors. John Wiley & Sons.

Wang C.C. (2011) Laser Scanning, Theory and Applications. InTech.

Wolf, P.R. (1983) Elements of Fotogrammetry, McGraw-Hill.

Academic Year	2018-19					
Course unit	A					
Courses	R (*) RAMO ÁREAS URBANAS RAMO EDIFÍCIOS					
	(*) Optional course unit for this course					
Faculty / School	Instituto Superior de Engenharia					
Main Scientific Area						
Acronym						
Language of instruction	Portuguese.					
Teaching/Learning modality	Presential.					
Coordinating teacher	Gonçalo Nuno Delgado Prates					
Teaching staff		Туре	Classes	Hours (*)		
Gonçalo Nuno Delgado Prates Paulo Jorge Miguel Charneca		TP TP	TP1 TP1	25TP 12.5TP		

Paulo Jorge Miguel Charneca

* For classes taught jointly, it is only accounted the workload of one.

Contact hours

Т	TP	PL	TC	S	E	ОТ	0	Total
0	37.5	0	0	0	0	0	0	168

T - Theoretical; TP - Theoretical and practical; PL - Practical and laboratorial; TC - Field Work; S - Seminar; E - Training; OT - Tutorial; O - Other

Pre-requisites

no pre-requisites

Prior knowledge and skills

Not applicable.

The students intended learning outcomes (knowledge, skills and competences)

Execute and understand methods of spatial metric-information acquisition based on photographs an object. Understanding methods of spatial metric-information acquisition by laser-scanning an object. Modeling point-clouds in BIM (Building Information Modeling) environment. Employ methodologies and application-tools in BIM environment to prepare and monitor AEC (Architecture, Engineering and Construction) projects.

Syllabus

Photography's geometry. Lens and light beams. Lens distortions. Central projection properties. Stereoscopic model. Overlaps and homolog points. Coliearidade equations. Point-cloud. Laser-scanning. Spherical coordinates. Spatial resolution. Scans co-registration. Point-cloud. Building Information Modeling. Import of 3D point-clouds. Import of 2D plans. Objects catalog. 3D modeling and visualization. AEC (Architecture, Engineering and Construction) interoperability.

Teaching methodologies (including evaluation)

The course has 2.5 hours per week of theory and practice. Theoretical-practical classes resort to expository method for transmission of theoretical knowledge with projection of slides and/or practical processing of photographic information and massive 3D, and 3D modeling in BIM environment (Building Information Modeling). The final grade is determined by a report on the resolution of two practical problems developed in the classroom, with rating no less than 8 and weights equal to 50% of the final grade. The approval requires final grade greater than or equal to 9.5.

Main Bibliography

Eastman, C., Teicholz, P., Sacks, R., Liston, K. (2011) BIM Handbook: A Guide to Building Information Modeling for Owners, Managers, Designers, Engineers and Contractors. John Wiley & Sons.

Wang C.C. (2011) Laser Scanning, Theory and Applications. InTech.

Wolf, P.R. (1983) Elements of Fotogrammetry, McGraw-Hill.