

|                              | English version at the end of this document                                                                                   |
|------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| Ano Letivo                   | 2017-18                                                                                                                       |
| Unidade Curricular           | DETEÇÃO REMOTA E CARTOGRAFIA SUBMARINA                                                                                        |
| Cursos                       | SISTEMAS MARINHOS E COSTEIROS (2.º Ciclo)  AQUACULTURA E PESCAS (2.º Ciclo) (*) RAMO: PESCAS BIOLOGIA MARINHA (2.º ciclo) (*) |
|                              | (*) Curso onde a unidade curricular é opcional                                                                                |
| Unidade Orgânica             | Faculdade de Ciências e Tecnologia                                                                                            |
| Código da Unidade Curricular | 17401007                                                                                                                      |
| Área Científica              | CIÊNCIAS DA TERRA                                                                                                             |
| Sigla                        |                                                                                                                               |
| Línguas de Aprendizagem      | Inglês                                                                                                                        |
| Modalidade de ensino         | Presencial                                                                                                                    |
| Docente Responsável          | Joaquim Manuel Freire Luís                                                                                                    |



| DOCENTE                    | TIPO DE AULA | TURMAS  | TOTAL HORAS DE CONTACTO (*) |
|----------------------------|--------------|---------|-----------------------------|
| Joaquim Manuel Freire Luís | PL; T        | T1; PL1 | 18T; 30PL                   |

<sup>\*</sup> Para turmas lecionadas conjuntamente, apenas é contabilizada a carga horária de uma delas.

| ANO | PERÍODO DE FUNCIONAMENTO* | HORAS DE CONTACTO | HORAS TOTAIS DE TRABALHO | ECTS |
|-----|---------------------------|-------------------|--------------------------|------|
| 1º  | S2                        | 18T; 30PL; 2O     | 168                      | 6    |

<sup>\*</sup> A-Anual;S-Semestral;Q-Quadrimestral;T-Trimestral

#### **Precedências**

Sem precedências

#### Conhecimentos Prévios recomendados

Alguma destreza na utilização de computadores e processamento-manipulação de dados.

#### Objetivos de aprendizagem (conhecimentos, aptidões e competências)

Proporcionar ao aluno o conhecimento dos princípios e métodos de detecção remota que são utilizados em oceanografia. Compreender a interacção entre energia electromagnética e matéria e os fenómenos que ocorrem durante a propagação da luz pela atmosfera e penetração na camada de água. Reconhecer plataformas de aquisição, sensores e tipo de imagens. Adquirir competências para seleccionar, manipular e interpretar imagens digitais fornecidos pela ESA e NOAA. Aprender a construir séries temporais da SST e concentração em Clorofila (entre outros) e proceder à construção de climatologias e outras estatísticas. Fornecer uma base teórica e prática na tecnologia de levantamentos multifeixe e técnicas para engenharia offshore, dragagens de portos e canais, habitats de pesca e de investigação científica.

## Conteúdos programáticos

Satélites, órbitas, resolução espacial e temporal, tipos de sensores; calibração e correcção atmosférica; Temperatura da superfície do mar (radiómetros de infravermelhos e de micro-ondas), Côr do oceano - concentração de clorofila e matéria em suspensão (radiómetro na banda do visível); Técnicas de segmentação por separação de cor e gradientes. Detecção de frentes térmicas. Topografia da superfície do oceano (radar altímetro).

Métodos do multifeixe e Sonar lateral. Imagiologia e interpretação do *Backscatter* acústico. Desenho e planeamento de levantamentos. Processamento e limpeza de dados de multifeixe ? Interactivo e automático. Construção de grelhas, mosaicos e cartografia. Métodos de apresentação dos dados



# Metodologias de ensino (avaliação incluída)

Aulas teóricas assistidas pelo uso de vídeo projector. Aulas teórico-práticas realizadas em sala de computadores onde os alunos realizarão passo a passo as diversas etapas de que é constituído o processo de processamento e análise de dados de satélite e de multifeixe.

A avaliação é baseada na execução de trabalhos 2 trabalhos práticos. Onde o primeiro trabalho vale 60% e o segundo 40%

A frequência de pelo menos 75% das aulas é obrigatória. A falha no cumprimento deste critério implica uma reprovação na disciplina.

## Bibliografia principal

Material fornecido pelo docente (powerpoints)

The MB-System Cookbook

http://www.mbari.org/data/mbsystem/mb-cookbook/index.html

Seabeam's Multibeam Sonar Theory of Operations Manual at http://www.mbari.org/data/mbsystem/sonarfunction/SeaBeamMultibeamTheoryOperation.pdf



| Academic Year              | 2017-18                                                                                   |      |          |           |  |  |
|----------------------------|-------------------------------------------------------------------------------------------|------|----------|-----------|--|--|
| Course unit                | REMOTE SENSING AND MARINE CARTOGRAPHY                                                     |      |          |           |  |  |
| Courses                    | MARINE AND COASTAL SYSTEMS  AQUACULTURE AND FISHERIES (*) RAMO: PESCAS MARINE BIOLOGY (*) |      |          |           |  |  |
|                            | (*) Optional course unit for this cou                                                     | ırse |          |           |  |  |
| Faculty / School           | Faculdade de Ciências e Tecnologia                                                        |      |          |           |  |  |
| Main Scientific Area       | CIÊNCIAS DA TERRA                                                                         |      |          |           |  |  |
| Acronym                    |                                                                                           |      |          |           |  |  |
| Language of instruction    | English                                                                                   |      |          |           |  |  |
| Teaching/Learning modality | Presential                                                                                |      |          |           |  |  |
| Coordinating teacher       | Joaquim Manuel Freire Luís                                                                |      |          |           |  |  |
| Teaching staff             |                                                                                           | Туре | Classes  | Hours (*) |  |  |
| Joaquim Manuel Freire Luís |                                                                                           | PI·T | T1: PI 1 | 18T: 30PI |  |  |

<sup>\*</sup> For classes taught jointly, it is only accounted the workload of one.



| Co | ntact | hou | re |
|----|-------|-----|----|
|    |       |     |    |

| Т  | TP | PL | TC | S | E | ОТ | 0 | Total |
|----|----|----|----|---|---|----|---|-------|
| 18 | 0  | 30 | 0  | 0 | 0 | 0  | 2 | 168   |

T - Theoretical; TP - Theoretical and practical; PL - Practical and laboratorial; TC - Field Work; S - Seminar; E - Training; OT - Tutorial; O - Other

#### **Pre-requisites**

no pre-requisites

#### Prior knowledge and skills

Skills on computer data processing are desirable.

## The students intended learning outcomes (knowledge, skills and competences)

Provide the students with knowledge of the principles and methods of remote sensing that are used in oceanography. Understanding the interaction between electromagnetic energy and matter and the phenomena that light is subjected to during its path through the atmosphere and penetration in the upper layer of the ocean. Learn about platforms, sensors and type types. Acquire skills to select, manipulate and interpret digital images provided by ESA and NOAA. Learning how to build time series of SST and chlorophyll concentration and proceed to the construction of climatology's and other statistics.

Provide a theoretical and practical background in technology and techniques for swath-bathymetry surveys offshore engineering, dredging harbors and channels, fishing habitats and scientific research. Provide an overview of the technology and problems associated with the swath-bathymetry data processing and visualization techniques and exploration of high-quality data

#### **Syllabus**

Satellites, orbits, spatial and temporal resolution, sensor types, calibration and atmospheric correction; Sea Surface Temperature (infrared radiometers and microwave), Ocean Color - chlorophyll and suspended matter (visible bands radiometers); techniques targeting color separation by segmenttion and gradients. Detection of thermal fronts. Ocean surface topography (radar altimeter). Methods of swath-bathymetry and side-scan sonar. Backscatter and interpretation of acoustic imaging. Design and survey planning. Processing and cleaning data from swath-bathymetry - Interactive and automatic. Construction of grids, mosaics and cartography. Methods of data presentation.

#### Teaching methodologies (including evaluation)

Lectures assisted by the use of slide slow. Theoretical and practical classes held in the computer room where students will do a step by step the various stages of the workflow followed during the processing and analysis of satellite and swath-bathymetry data.

The evaluation is based on the execution of 2 practical works. In which the first worth 60% and the second 40% of the final grade.

The attendance of at least 75% of classes is compulsory. Failure to comply with this criterion implies a disapproval in the discipline.



# Main Bibliography

- Material provided by the teacher (slides)
- The MB-System Cookbook

http://www.mbari.org/data/mbsystem/mb-cookbook/index.html

- Seabeam's Multibeam Sonar Theory of Operations Manual at http://www.mbari.org/data/mbsystem/sonarfunction/SeaBeamMultibeamTheoryOperation.pdf