

	English version at the end of this document
Ano Letivo	2021-22
Unidade Curricular	DIGITALIZAÇÃO E MODELAÇÃO 3D
Cursos	DESENHO E MODELAÇÃO DIGITAL
Unidade Orgânica	Instituto Superior de Engenharia
Código da Unidade Curricular	18431008
Área Científica	FORMAÇÃO TÉCNICA,ARQUITETURA E URBANISMO
Sigla	FT
Código CNAEF (3 dígitos)	581
Contributo para os Objetivos de Desenvolvimento Sustentável - ODS (Indicar até 3 objetivos)	11-9-12
Línguas de Aprendizagem	Português.

Modalidade de ensino	Presencia	l.			
Docente Responsável	Gonçalo N	luno Delgado Prates			
DOCENTE		TIPO DE AULA	TURMAS	TOTAL HORAS DE CONTACTO (*)	
Gonçalo Nuno Delgado Prates		PL; TP	TP1; PL1	_	15TP; 30PL
* Para turmas lecionadas conjunta	amente, ape	nas é contabilizada a ca	arga horária de u	ma delas.	

ANO	PERÍODO DE FUNCIONAMENTO*	HORAS DE CONTACTO	HORAS TOTAIS DE TRABALHO	ECTS
1º	S2	15TP; 30PL	100	4

^{*} A-Anual;S-Semestral;Q-Quadrimestral;T-Trimestral

Precedências

Sem precedências

Conhecimentos Prévios recomendados

Não aplicável.

Objetivos de aprendizagem (conhecimentos, aptidões e competências)

Executar e compreender métodos para levantamento arquitetónico, com base em informação geométrica massiva ou nuvem de pontos, e para visualização, exportação e modelação tridimensional.

Conteúdos programáticos

Informação geométrica massiva. Laser-scanner terrestre. Azimute, inclinação e distância. Referencial 3D cartesiano. Co-registro de nuvens de pontos. Fotogrametria digital terrestre. Propriedades da projeção central. Ângulo paralático e visão estereoscópica. Sobreposição e pontos homólogos. Equações de colinearidade. Resolução computacional. Fotogrametria digital desde UAV (Unmanned Aerial Vehicle). Triangulação, malha poligonal (mesh) e modelação 3D. Importação e manipulação de nuvem de pontos em ambiente BIM (Building Information Modeling). Diferenciação de nuvens de pontos para a deteção de mudanças.

Metodologias de ensino (avaliação incluída)

A unidade curricular tem 1.0 horas teórico-práticas e 2.0 práticas, por semana. As aulas teóricas-práticas recorrem ao método expositivo para transmissão de conhecimentos teóricos com projeção de slides e as aulas práticas à execução prática de processamento informação fotográfica e 3D massiva, e modelação 3D em ambiente BIM (Building Information Modeling). A classificação final é determinada por relatório referente à resolução de 2 problemas práticos desenvolvidos em sala de aula, com classificação não inferior a 8 valores e com pesos iguais a 50% da nota final. A aprovação requer nota final superior ou igual a 9.5 valores.

Bibliografia principal

Prates, G. (2016) Levantamento Arquitetónico, transparências da disciplina, ISE- UAIg, Faro.

Berberan, A. (2003) Elementos de Fotogrametria, Lidel, Lisboa.

Wolf, P.R. (1983) Elements of Fotogrammetry, McGraw-Hill.

Wang C.C. (2011) Laser Scanning, Theory and Applications. InTech.

Academic Year	2021-22
Course unit	SCANNING AND 3D MODELING
Courses	DIGITAL DRAWING AND MODELING
Faculty / School	INSTITUTE OF ENGINEERING
Main Scientific Area	
Acronym	
CNAEF code (3 digits)	581
Contribution to Sustainable Development Goals - SGD (Designate up to 3 objectives)	11-9-12
Language of instruction	Portuguese.
Teaching/Learning modality	Presential.

Coordinating teacher

Gonçalo Nuno Delgado Prates

Teaching staff	Туре	Classes	Hours (*)	
Gonçalo Nuno Delgado Prates	PL; TP	TP1; PL1	15TP; 30PL	

^{*} For classes taught jointly, it is only accounted the workload of one.

_		_	
\sim	ntact	ho	IFC

Т	TP	PL	TC	S	E	OT	0	Total
0	15	30	0	0	0	0	0	100

T - Theoretical; TP - Theoretical and practical; PL - Practical and laboratorial; TC - Field Work; S - Seminar; E - Training; OT - Tutorial; O - Other

Pre-requisites

no pre-requisites

Prior knowledge and skills

Not applicable.

The students intended learning outcomes (knowledge, skills and competences)

Execute and understand methods of spatial metric-information acquisition based on photographs an object. Understanding methods of spatial metric-information acquisition by laser-scanning an object. Modeling point-clouds in BIM (Building Information Modeling) environment. Employ methodologies and application-tools in BIM environment.

Syllabus

Dense-cloud. Terrestrial laser-scanner. Azimuth, inclination e distance. 3D cartesian referencial. Point-cloud co-registry. Terrestrial digital photogrammetry. Central projection properties. Paralatic angle and stereoscopic model. Overlaps and homolog points. Coliearidade equations. Computational solution. UAV (Unmanned Aerial Vehicle) digital photogrammetry. Triangulation, mesh and 3D modeling. Point-cloud import and manipulation in BIM (Building Information Modeling) environment. Change detection by point-cloud differences.

Teaching methodologies (including evaluation)

The course has 1.0 hours of theoretical-practical and 2.0 of practical, per week. Theoretical-practical classes resort to expository method for transmission of theoretical knowledge with projection of slides and practical classes to processing of photographic information and massive 3D, and 3D modeling in BIM environment (Building Information Modeling). The final grade is determined by a report on the resolution of two practical problems developed in the classroom, with rating no less than 8 and weights equal to 50% of the final grade. The approval requires final grade greater than or equal to 9.5.

Main Bibliography

Prates, G. (2016) Levantamento Arquitetónico, transparências da disciplina, ISE-UAlg, Faro.

Berberan, A. (2003) Elementos de Fotogrametria, Lidel, Lisboa.

Wolf, P.R. (1983) Elements of Fotogrammetry, McGraw-Hill.

Wang C.C. (2011) Laser Scanning, Theory and Applications. InTech.