

		English version at the end of this document
Ano Letivo	2023-24	
Unidade Curricular	FENÓMENOS DE TRANSFERÊNCIA	
Cursos	BIOENGENHARIA (1.º ciclo)	
Unidade Orgânica	Faculdade de Ciências e Tecnologia	
Código da Unidade Curricular	19071017	
Área Científica	BIOENGENHARIA	
Sigla	BIOENG	
Código CNAEF (3 dígitos)	522	
Contributo para os Objetivos de Desenvolvimento Sustentável - ODS (Indicar até 3 objetivos)	7	
Línguas de Aprendizagem	Português	

Modalid	ade de	ensino
---------	--------	--------

Presencial

Docente Responsável

Eusébio Zeferino Encarnação da Conceição

DOCENTE	TIPO DE AULA	TURMAS	TOTAL HORAS DE CONTACTO (*)
Eusébio Zeferino Encarnação da Conceição	PL; T	T1; PL1	28T; 28PL

^{*} Para turmas lecionadas conjuntamente, apenas é contabilizada a carga horária de uma delas.

ANO	PERÍODO DE FUNCIONAMENTO*	HORAS DE CONTACTO	HORAS TOTAIS DE TRABALHO	ECTS
2º	S2	28T; 28PL	156	6

^{*} A-Anual;S-Semestral;Q-Quadrimestral;T-Trimestral

Precedências

Sem precedências

Conhecimentos Prévios recomendados

Primeira e segunda lei da termidinâmica

Objetivos de aprendizagem (conhecimentos, aptidões e competências)

Domínio dos conceitos físicos relevantes para a análise dos fenómenos de transferência de calor e massa com especial incidência nos fenómenos verificados no sistema térmico, termoregulatório, circulação e respiração do corpo humano. Serão abordados separadamente tópicos relacionados com a adimensionalização, transferência em meios contínuos não isotérmicos, transferência em meios descontínuos, transferência de massa e modelação integral e diferencial de fenómenos térmicos.

Conteúdos programáticos

1.Introdução.

A transferência de calor e massa e a Bioengenharia.

2 Adimensionalização

Transferência de calor e massa por convecção.

3. Transferência em meios contínuos não isotérmicos

Modos de transmissão de calor por Condução e Convecção.

Coordenadas cartesianas, cilíndricas e esféricas.

Equações diferenciais de transmissão de calor.

Condução em regime permanente sem e com geração de calor.

Transmissão de calor por convecção.

Coeficiente de transmissão de calor por convecção natural forçada e mista.

4. Transferência em meios descontínuos

Radiação. Lei de Plank e o corpo negro. Lei de Stefan-Boltzman. Factores de forma.

Radiação em meios não absorventes. Radiosidade.

5. Transferência de massa

Modelação integral.

Adimensionalização em convecção.

Modelação diferencial.

6. Modelação integral e diferencial de fenómenos térmicos

Método das diferenças finitas e Runge-Kutta.

Aplicações no sistema térmico, termoregulatório, circulação e respiração do corpo humano.

Metodologias de ensino (avaliação incluída)

A metodologia de ensino divide-se em aulas teóricas e aulas práticas. Nas aulas teóricas serão lecionadas todas as temáticas relacionadas com os Fenómenos de Transferência, enquanto que nas aulas práticas serão resolvidos exercícios práticos, de aplicação da matéria teórica, e efetuados ensaios laboratoriais para complementar os exercícios práticos.

A avaliação é efetuada a partir de um exame e de um trabalho prático. A classificação final, CF, é dada por:

CF =0.7 CE + 0.3 CTP (arredondada às unidades),

em que:

CTP - classificação do trabalho prático,

CE - classificação do exame,

A aprovação verifica-se quando:

- trabalho prático tenha apreciação favorável,
- nota mínima de 10 valores no exame (CE),
- presença obrigatória em pelo menos ¾ das aulas práticas,
- CF maior ou igual 10 valores.

Bibliografia principal

- E. Z. E. Conceição (1997), ¿Transferência de Calor e Massa por Convecção Natural, Forçada e Mista em Placas Planas Lisas¿, Universidade do Algarve.
- E. Z. E. Conceição (1998), ¿Introdução à Modelação Integral e Diferencial de Fenómenos Térmicos em Regime Transitório¿, Universidade do Algarve.
- E. Z. E. Conceição (1999), ¿Modelação Integral da Transferência de Massa¿, Universidade do Algarve.
- E. Z. E. Conceição (2000), ¿Introdução aos Fenómenos de Transferência de Calor e Massa¿, Universidade do Algarve.

Academic Year	2023-24
Course unit	HEAT AND MASS TRANSFER
Courses	BIOENGINEERING (1st cycle)
Faculty / School	FACULTY OF SCIENCES AND TECHNOLOGY
Main Scientific Area	
Acronym	
CNAEF code (3 digits)	522
Contribution to Sustainable Development Goals - SGD (Designate up to 3 objectives)	7
Language of instruction	Portuguese
Teaching/Learning modality	Presential

Coordinating teacher

Eusébio Zeferino Encarnação da Conceição

Teaching staff		Classes	Hours (*)
Eusébio Zeferino Encarnação da Conceição	PL; T	T1; PL1	28T; 28PL

^{*} For classes taught jointly, it is only accounted the workload of one.

Т	TP	PL	TC	S	E	ОТ	0	Total
28	0	28	0	0	0	0	0	156

T - Theoretical; TP - Theoretical and practical ; PL - Practical and laboratorial; TC - Field Work; S - Seminar; E - Training; OT - Tutorial; O - Other

Pre-requisites

no pre-requisites

Prior knowledge and skills

First and second thermodinamic layer

The students intended learning outcomes (knowledge, skills and competences)

Topics related to dimensionless, transfer in non-isothermal continuous media, transfer in discontinuous media, mass transfer and integral and differential modelling of thermal phenomena will be discussed separately.

Syllabus

1. Introduction.

The transfer of heat and mass and Bioengineering.

2 Dimensionalisation

Heat transfer and mass by convection.

3. Transfer in non-isothermal continuous media

Heat transmission modes by conduction and convection.

Cartesian, cylindrical and spherical coordinates.

Differential heat transfer equations.

Steady-state driving without and with heat generation.

Convection heat transfer.

Coefficient of heat transmission by forced and mixed natural convection.

4. Discontinuous transfer

Radiation. Plank's Law and the Black Body. Law of Stefan-Boltzman. Form factors.

Radiation on non-absorbent media. Radiosity.

5. Mass transfer

Integral modeling.

Dimensionalisation in convection.

Differential modeling.

6. Integral and differential modeling of thermal phenomena

Finite difference method and Runge-Kutta.

Applications in the thermal system, thermoregulatory, circulation and respiration of the human body.

Teaching methodologies (including evaluation)

The teaching methodology is divided into theoretical classes and practical classes. In the theoretical classes will be taught all the themes related to Transfer Phenomena, while in the practical classes will be solved practical exercises, application of theoretical material, and laboratory tests to complement the practical exercises.

Assessment is based on an examination and practical work. The final classification, CF, is given by:

CF = 0.7 CE + 0.3 CTP (rounded to units),

on what:

CTP - classification of practical work,

EC - classification of the examination,

Approval shall take place when:

- practical work has favorable appreciation,
- minimum mark of 10 marks in the exam (EC),
- CF greater than or equal to 10 values

Main Bibliography

- E. Z. E. Conceição (1997), ¿Transferência de Calor e Massa por Convecção Natural, Forçada e Mista em Placas Planas Lisas¿, Universidade do Algarve.
- E. Z. E. Conceição (1998), ¿Introdução à Modelação Integral e Diferencial de Fenómenos Térmicos em Regime Transitório¿, Universidade do Algarve.
- E. Z. E. Conceição (1999), ¿Modelação Integral da Transferência de Massa¿, Universidade do Algarve.
- E. Z. E. Conceição (2000), ¿Introdução aos Fenómenos de Transferência de Calor e Massa¿, Universidade do Algarve.