

	English version at the end of this document
Ano Letivo	2022-23
Unidade Curricular	PROTEÇÃO A CHEIAS EM PLANÍCIES COSTEIRAS
Cursos	RISCOS COSTEIROS, IMPACTOS DAS ALTERAÇÕES CLIMÁTICAS E ADAPTAÇÃO - COASTHazar (2º CICLO) ERASMUS MUNDUS
Unidade Orgânica	Faculdade de Ciências e Tecnologia
Código da Unidade Curricular	19391011
Área Científica	ENGENHARIA
Sigla	
Código CNAEF (3 dígitos)	582
Contributo para os Objetivos de Desenvolvimento Sustentável - ODS (Indicar até 3 objetivos)	11 15
Línguas de Aprendizagem	English

Modalidade de ensino

Face to face

Docente Responsável

Óscar Manuel Fernandes Cerveira Ferreira

DOCENTE TIPO DE AULA TURMAS	TOTAL HORAS DE CONTACTO (*)
-----------------------------	-----------------------------

* Para turmas lecionadas conjuntamente, apenas é contabilizada a carga horária de uma delas.

ANO	PERÍODO DE FUNCIONAMENTO*	HORAS DE CONTACTO	HORAS TOTAIS DE TRABALHO	ECTS
1°	S2	25T; 25TP	140	5

* A-Anual;S-Semestral;Q-Quadrimestral;T-Trimestral

Precedências

Sem precedências

Conhecimentos Prévios recomendados

N/A

Objetivos de aprendizagem (conhecimentos, aptidões e competências)

- 1. Explain concepts and tools for coastal flood and wave modelling and flooding forecasting.
- 2. Apply tools used for coastal flood modelling and flooding forecasting.
- 3. Understand and apply the principles of flood frequency analysis and risk-based approaches to design of flood defences.
- 4. Explain flood risk management with due consideration of societal aspects, including flooding in the floodplain and coastal zone, management of flood risk, planning aspects and a variety of non-structural measures.
- 5. Assess the impact of climate change on flood risk.
- 6. Develop a Disaster Risk Reduction (DRR) plan, including non-structural measures.

Conteúdos programáticos

Hindcasting of the large-scale wave generation and storm surge generated by a major hurricane (Michael in the Gulf of Mexico) using the Deltares SFINCS model in combination with a fast version of SWAN, HurryWave, and the subsequent overtopping, morphological impact and breaching at Mexico Beach, FL), using XBeach

Assessment of the damage to houses and infrastructure during this hurricane using Delft-FIAT

Assessment of how various non-structural measures would have affected the damage during this extreme event.

Application of a probabilistic framework, T CWiseto generate a statistically representative series of hurricanes and their consequences, in order to create flood risk maps as a basis for a DRR plan, where the effect of some promising solutions from 3. are simulated

Repeating a few cases for time slices in a limited number of future scenarios under climate change.

Metodologias de ensino (avaliação incluída)

The course has 5 ECTS, a total of 140 hours, with 50 hours of contact. Theoretical classes will be based on oral presentations with image support, including the discussion of case studies and the definition of best options for simulated situations. A large part of the module will be practical, hands-on exercise of state-of-the-art tools, applied to the full chain of models required to assess actual and potential hurricane damages and risk. The case will be based on Hurricane Michael, which had a huge impact on Mexico Beach, FL.

Assessment methods: Group reports (50%) and presentations (50%), subdivided into the following topics: a) model setup and hindcasting of large-scale surge and wave models; b) model setup and hindcasting of morphological change, inundation and damage; c) effect of interventions on morphological change, inundation and damage; d) preparation of flood risk maps for current and climate change scenarios; e) preparation of a Disaster Risk Reduction Plan.

Bibliografia principal

Leijnse et al 2021a Modeling compound flooding in coastal systems using a computationally efficient reduced-physics solver: Including fluvial, pluvial, tidal, wind- and wave-driven processes. *Coastal Eng*, 103796

Leijnse et al 2021b Generating reliable estimates of tropical cyclone induced coastal hazards along the Bay of Bengal for current and future climates using synthetic tracks. *Nat Haz Earth Syst Sci* **2021**, 1-40

McCall et al 2010 Two-dimensional time dependent hurricane overwash and erosion modeling at Santa Rosa Island. Coast Eng 57, 668-683

Nederhoff et al. 2021 Simulating synthetic tropical cyclone tracks for statistically reliable wind and pressure estimations. *Na. Haz Earth Syst Sci* **21**, 861-878

Roelvink et al 2017 Improving predictions of swash dynamics in XBeach: The role of groupiness and incident-band runup. Coast Eng.

Roelvink et al. 2009 Modelling storm impacts on beaches, dunes and barrier islands. Coast Eng 56, 1133-1152

Slager et al 2016 User Manual Delft-FIAT version 1

Academic Year	2022-23
Course unit	
Courses	Coastal Hazards - Risks, Climate Change Impacts and Adaption (COASTHazar)
Faculty / School	FACULTY OF SCIENCES AND TECHNOLOGY
Main Scientific Area	
Acronym	
CNAEF code (3 digits)	582
Contribution to Sustainable Development Goals - SGD (Designate up to 3 objectives)	11 15
Language of instruction	English
Teaching/Learning modality	Face to face

Coordinating teacher

Óscar Manuel Fernandes Cerveira Ferreira

Teaching staff	Туре	Classes	Hours (*)
----------------	------	---------	-----------

* For classes taught jointly, it is only accounted the workload of one.

Contact hours	т	ТР	PL	тс	S	E	от	0	Total
	25	25	0	0	0	0	0	0	140
T. Theoretical, T.D. Theoretical and practical and laboratorial, T.C. Field Work, C. Cominan, C. Training, O.T.									

T - Theoretical; TP - Theoretical and practical; PL - Practical and laboratorial; TC - Field Work; S - Seminar; E - Training; OT -Tutorial; O - Other

Pre-requisites

no pre-requisites

Prior knowledge and skills

N/A

The students intended learning outcomes (knowledge, skills and competences)

- 1. Explain concepts and tools for coastal flood and wave modelling and flooding forecasting.
- 2. Apply tools used for coastal flood modelling and flooding forecasting.
- 3. Understand and apply the principles of flood frequency analysis and risk-based approaches to design of flood defences.
- 4. Explain flood risk management with due consideration of societal aspects, including flooding in the floodplain and coastal zone, management of flood risk, planning aspects and a variety of non-structural measures.
- 5. Assess the impact of climate change on flood risk.
- 6. Develop a Disaster Risk Reduction (DRR) plan, including non-structural measures.

Syllabus

Hindcasting of the large-scale wave generation and storm surge generated by a major hurricane (Michael in the Gulf of Mexico) using the Deltares SFINCS model in combination with a fast version of SWAN, HurryWave, and the subsequent overtopping, morphological impact and breaching at Mexico Beach, FL), using XBeach

Assessment of the damage to houses and infrastructure during this hurricane using Delft-FIAT

Assessment of how various non-structural measures would have affected the damage during this extreme event.

Application of a probabilistic framework, T CWiseto generate a statistically representative series of hurricanes and their consequences, in order to create flood risk maps as a basis for a DRR plan, where the effect of some promising solutions from 3. are simulated

Repeating a few cases for time slices in a limited number of future scenarios under climate change.

Teaching methodologies (including evaluation)

The course has 5 ECTS, a total of 140 hours, with 50 hours of contact. Theoretical classes will be based on oral presentations with image support, including the discussion of case studies and the definition of best options for simulated situations. A large part of the module will be practical, hands-on exercise of state-of-the-art tools, applied to the full chain of models required to assess actual and potential hurricane damages and risk. The case will be based on Hurricane Michael, which had a huge impact on Mexico Beach, FL.

Assessment methods: Group reports (50%) and presentations (50%), subdivided into the following topics: a) model setup and hindcasting of large-scale surge and wave models; b) model setup and hindcasting of morphological change, inundation and damage; c) effect of interventions on morphological change, inundation and damage; d) preparation of flood risk maps for current and climate change scenarios; e) preparation of a Disaster Risk Reduction Plan.

Main Bibliography

Leijnse et al 2021a Modeling compound flooding in coastal systems using a computationally efficient reduced-physics solver: Including fluvial, pluvial, tidal, wind- and wave-driven processes. *Coastal Eng*, 103796

Leijnse et al 2021b Generating reliable estimates of tropical cyclone induced coastal hazards along the Bay of Bengal for current and future climates using synthetic tracks. *Nat Haz Earth Syst Sci* **2021**, 1-40

McCall et al 2010 Two-dimensional time dependent hurricane overwash and erosion modeling at Santa Rosa Island. Coast Eng 57, 668-683

Nederhoff et al. 2021 Simulating synthetic tropical cyclone tracks for statistically reliable wind and pressure estimations. *Na. Haz Earth Syst Sci* **21**, 861-878

Roelvink et al 2017 Improving predictions of swash dynamics in XBeach: The role of groupiness and incident-band runup. Coast Eng.

Roelvink et al. 2009 Modelling storm impacts on beaches, dunes and barrier islands. Coast Eng 56, 1133-1152

Slager et al 2016 User Manual Delft-FIAT version 1